Furfural to FDCA: systematic process design and techno-economic evaluation

Guus H.C. Dubbink, Thomas R.J. Geverink, Bas Haar, Harald W. Koets, Abhay Kumar, Henk van den Berg, Aloijsius G.J. van der Ham*, Jean Paul Lange

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

13 Downloads (Pure)

Abstract

2,5-Furan dicarboxylic acid (FDCA) is a promising intermediate for producing polyethylene furan dicarboxylate, an alternative to polyethylene terephthalate that combines a significantly lower greenhouse gas footprint with better mechanical and gas barrier properties. This work presents a process design and techno-economic evaluation for producing FDCA from non-edible biomass via the oxidation of furfural to furoate salt, and subsequent carboxylation to furandicarboxylate salt. Major technical uncertainties are associated with the possible polymerization of furfural in the oxidation step and the state of salt phase in the carboxylation step. Based on the furfural market price of $1400/ton this process requires a minimum selling price of 2000 ± 500 $/ton FDCA. To compete with purified terephthalic acid (PTA), it requires a premium of 100% for better performance and sustainability, or a combination of much cheaper furfural and a much lower capital expenditures (CAPEX).

Original languageEnglish
JournalBiofuels, Bioproducts and Biorefining
DOIs
Publication statusAccepted/In press - 8 Mar 2021

Keywords

  • UT-Hybrid-D
  • electrodialysis
  • furfural
  • process design
  • techno-economic analysis
  • 2,5-furandicarboxylic acid (FDCA)

Fingerprint Dive into the research topics of 'Furfural to FDCA: systematic process design and techno-economic evaluation'. Together they form a unique fingerprint.

Cite this