Fusion of likelihood ratio classifier with ICP-based matcher for 3D face recognition

Tjalling Tjalkens (Editor), B. Gökberk, Frans Willens (Editor), Lieuwe Jan Spreeuwers, Raymond N.J. Veldhuis

    Research output: Contribution to conferencePaper

    73 Downloads (Pure)


    Three-dimensional (3D) face recognition systems have started to become popular in biometric systems recently. This is due to several factors: i) facial shape characteristics contain discriminative information, ii) availability of practical 3D acquisition devices, and iii) invariance of 3D facial information to several factors such as illumination and pose changes. It has been shown that classical texture-based 2D face classifiers have difficulties in identifying faces under such conditions. Therefore, taking advantage of 3D facial shape information either alone or together with 2D modality is considered to be a viable solution under such circumstances. In this work, we propose a novel 3D face recognition system using the combination of different individual 3D face classifiers; namely Linear Discriminant-based (LDA) Likelihood Ratio classifier with the Iterative Closest Point-based (ICP) matching algorithm. Both systems operate on aligned and normalized 3D facial surfaces. Alignment phase of the proposed system carries out absolute alignment such that all faces are in a specific position and direction, with non-facial parts removed. LDA-based system uses absolutely aligned faces and produce similarity scores using Likelihood ratio-based classifier. However, the ICP-based classifier performs additional surface matching between absolutely aligned faces, which can be considered as relative alignment. After pair-wise alignment of gallery and probe faces, the ICP algorithm produces dissimilarity scores, by measuring the quality of surface registration. With the use of different matching algorithms and different alignment methods, our approach tries to minimize the shortcomings of each individual method. Finally, the scores obtained by 3D face recognizers are fused to improve the verification accuracy. Our preliminary experiments conducted on the subset of FRGC v2 3D face database show promising performance improvement in verification simulations.
    Original languageUndefined
    Number of pages7
    Publication statusPublished - May 2009
    Event30th WIC Symposium on Information Theory in the Benelux 2009 - Eindhoven, Netherlands
    Duration: 28 May 200929 May 2009
    Conference number: 30


    Conference30th WIC Symposium on Information Theory in the Benelux 2009


    • SCS-Safety
    • EWI-15792
    • IR-79710

    Cite this