Gas-liquid dynamics at low Reynolds numbers in pillared rectangular micro channels

S.R.A. de Loos, J. van der Schaaf, Roald M. Tiggelaar, T.A. Nijhuis, M.H.J.M. de Croon, J.C. Schouten

Research output: Contribution to journalArticleAcademicpeer-review

29 Citations (Scopus)
73 Downloads (Pure)

Abstract

Most heterogeneously catalyzed gas–liquid reactions in micro channels are chemically/kinetically limited because of the high gas–liquid and liquid–solid mass transfer rates that can be achieved. This motivates the design of systems with a larger surface area, which can be expected to offer higher reaction rates per unit volume of reactor. This increase in surface area can be realized by using structured micro channels. In this work, rectangular micro channels containing round pillars of 3 μm in diameter and 50 μm in height are studied. The flow regimes, gas hold-up, and pressure drop are determined for pillar pitches of 7, 12, 17, and 27 μm. Flow maps are presented and compared with flow maps of rectangular and round micro channels without pillars. The Armand correlation predicts the gas hold-up in the pillared micro channel within 3% error. Three models are derived which give the single-phase and the two-phase pressure drop as a function of the gas and liquid superficial velocities and the pillar pitches. For a pillar pitch of 27 μm, the Darcy-Brinkman equation predicts the single-phase pressure drop within 2% error. For pillar pitches of 7, 12, and 17 μm, the Blake-Kozeny equation predicts the single-phase pressure drop within 20%. The two-phase pressure drop model predicts the experimental data within 30% error for channels containing pillars with a pitch of 17 μm, whereas the Lockhart–Martinelli correlation is proven to be non-applicable for the system used in this work. The open structure and the higher production rate per unit of reactor volume make the pillared micro channel an efficient system for performing heterogeneously catalyzed gas–liquid reactions
Original languageUndefined
Pages (from-to)131-144
Number of pages14
JournalMicrofluidics and nanofluidics
Volume9
Issue number1
DOIs
Publication statusPublished - 2010

Keywords

  • IR-94216
  • METIS-266859

Cite this