TY - JOUR
T1 - Gas-liquid mass transfer with parallel reversible reactions
T2 - I. Absorption of CO2 into solutions of sterically hindered amines
AU - Bosch, Hans
AU - Versteeg, Geert
AU - van Swaaij, Wim P.M.
PY - 1989
Y1 - 1989
N2 - A numerical method developed by Verteeg (1989, Chem. Engng Sci.44, 2295–2310; 1990, Chem Engng Sci.45, in press) is applied to some specific problems in gas—liquid mass transfer. The experimental results of Chakraborty (1986, Chem. Engng Sci.41, 997–1003) and Zioudas and Dadach (1986, Chem. Engng Sci.41, 405–408) on the absorption of Co2 into aqueous solutions of sterically hindered amines are evaluated with the numerical model. It is shown that studying the absorption of CO2 into aqueous solutions of sterically hindered amines requires a rigorous numerical solution of the differential equations describing the mass transfer instead of analytical and numerical approximations based on a reduction of the number of reactions by neglecting or lumping reactions. It is demonstrated that the absorption rates of CO2 into sterically hindered amine solutions can be explained in terms of the established reactions rates of CO2 in amine solutions alone, and no new reaction paths are necessary to explain the observed behaviour.
AB - A numerical method developed by Verteeg (1989, Chem. Engng Sci.44, 2295–2310; 1990, Chem Engng Sci.45, in press) is applied to some specific problems in gas—liquid mass transfer. The experimental results of Chakraborty (1986, Chem. Engng Sci.41, 997–1003) and Zioudas and Dadach (1986, Chem. Engng Sci.41, 405–408) on the absorption of Co2 into aqueous solutions of sterically hindered amines are evaluated with the numerical model. It is shown that studying the absorption of CO2 into aqueous solutions of sterically hindered amines requires a rigorous numerical solution of the differential equations describing the mass transfer instead of analytical and numerical approximations based on a reduction of the number of reactions by neglecting or lumping reactions. It is demonstrated that the absorption rates of CO2 into sterically hindered amine solutions can be explained in terms of the established reactions rates of CO2 in amine solutions alone, and no new reaction paths are necessary to explain the observed behaviour.
U2 - 10.1016/0009-2509(89)85215-7
DO - 10.1016/0009-2509(89)85215-7
M3 - Article
SN - 0009-2509
VL - 44
SP - 2723
EP - 2734
JO - Chemical engineering science
JF - Chemical engineering science
IS - 11
ER -