TY - JOUR

T1 - Gas–solid interaction force from direct numerical simulation (DNS) of binary systems with extreme diameter ratios

AU - Sarkar, S.

AU - Kriebitzsch, S.H.L.

AU - van der Hoef, Martin Anton

AU - Kuipers, J.A.M.

PY - 2009

Y1 - 2009

N2 - Fluid–particle systems as commonly encountered in chemical, metallurgical and petroleum industries are mostly polydisperse in nature. However, the relations used to describe fluid–particle interactions are originally derived from monodisperse systems, with ad hoc modifications to account for polydispersity. In previous work it was shown that for bidisperse systems with moderate diameter ratios of 1:2 to 1:4, this approach leads to discrepancies, and a correction factor is needed. In this work we demonstrate that this correction factor also holds for more extreme diameter ratios of 1:5, 1:7 and 1:10, although the force on the large particles is slightly overestimated when using the correction factor. The main origin of the correction is that the void surrounding the large particles becomes less in case of a bidisperse mixture, as compared to a monodisperse system with the same volume fraction. We further investigated this discrepancy by calculating the volume per particle by means of Voronoi tessellation.

AB - Fluid–particle systems as commonly encountered in chemical, metallurgical and petroleum industries are mostly polydisperse in nature. However, the relations used to describe fluid–particle interactions are originally derived from monodisperse systems, with ad hoc modifications to account for polydispersity. In previous work it was shown that for bidisperse systems with moderate diameter ratios of 1:2 to 1:4, this approach leads to discrepancies, and a correction factor is needed. In this work we demonstrate that this correction factor also holds for more extreme diameter ratios of 1:5, 1:7 and 1:10, although the force on the large particles is slightly overestimated when using the correction factor. The main origin of the correction is that the void surrounding the large particles becomes less in case of a bidisperse mixture, as compared to a monodisperse system with the same volume fraction. We further investigated this discrepancy by calculating the volume per particle by means of Voronoi tessellation.

KW - IR-67348

U2 - 10.1016/j.partic.2009.02.002

DO - 10.1016/j.partic.2009.02.002

M3 - Article

VL - 7

SP - 233

EP - 237

JO - Particuology

JF - Particuology

SN - 1674-2001

IS - 4

ER -