TY - JOUR
T1 - Gate-controlled spin extraction from topological insulator surfaces
AU - Asgharpour, Ali
AU - Gorini, Cosimo
AU - Essert, Sven
AU - Richter, Klaus
AU - Adagideli, İnanç
PY - 2020/7/15
Y1 - 2020/7/15
N2 - Spin-momentum locking, a key property of the surface states of three-dimensional topological insulators (3DTIs), provides a new avenue for spintronics applications. One consequence of spin-momentum locking is the induction of surface spin accumulations due to applied electric fields. In this paper, we investigate the extraction of such electrically induced spins from their host TI material into adjoining conventional, hence topologically trivial, materials that are commonly used in electronics devices. We focus on effective Hamiltonians for bismuth-based 3DTI materials in the Bi2Se3 family, and numerically explore the geometries for extracting current-induced spins from a TI surface. In particular, we consider a device geometry in which a side pocket is attached to various faces of a 3DTI quantum wire and show that it is possible to create current-induced spin accumulations in these topologically trivial side pockets. We further study how such spin extraction depends on geometry and material parameters, and find that electron-hole degrees of freedom can be utilized to control the polarization of the extracted spins by an applied gate voltage.
AB - Spin-momentum locking, a key property of the surface states of three-dimensional topological insulators (3DTIs), provides a new avenue for spintronics applications. One consequence of spin-momentum locking is the induction of surface spin accumulations due to applied electric fields. In this paper, we investigate the extraction of such electrically induced spins from their host TI material into adjoining conventional, hence topologically trivial, materials that are commonly used in electronics devices. We focus on effective Hamiltonians for bismuth-based 3DTI materials in the Bi2Se3 family, and numerically explore the geometries for extracting current-induced spins from a TI surface. In particular, we consider a device geometry in which a side pocket is attached to various faces of a 3DTI quantum wire and show that it is possible to create current-induced spin accumulations in these topologically trivial side pockets. We further study how such spin extraction depends on geometry and material parameters, and find that electron-hole degrees of freedom can be utilized to control the polarization of the extracted spins by an applied gate voltage.
KW - 22/2 OA procedure
UR - http://www.scopus.com/inward/record.url?scp=85088877828&partnerID=8YFLogxK
U2 - 10.1103/PhysRevB.102.035401
DO - 10.1103/PhysRevB.102.035401
M3 - Article
AN - SCOPUS:85088877828
SN - 2469-9950
VL - 102
JO - Physical review B: Covering condensed matter and materials physics
JF - Physical review B: Covering condensed matter and materials physics
IS - 3
M1 - 035401
ER -