TY - JOUR
T1 - Gelatin-tyramine addition and low hydrogel density improves cell attachment, migration, and metabolic activity in vitro and tissue response in vivo in enzymatically crosslinkable dextran-hyaluronic acid hydrogels
AU - Hendriks, Jan
AU - Zoetebier, Bram
AU - Larrea, Carolina Serrano
AU - Le, Nguyen Xuan Thanh
AU - Saris, Daniël B.F.
AU - Karperien, Marcel
N1 - Publisher Copyright:
© 2023
PY - 2024/2
Y1 - 2024/2
N2 - Hydrogels are receiving increasing attention for their use in 3D cell culture, tissue engineering, and bioprinting applications. Each application places specific mechanical and biological demands on these hydrogels. We developed a hydrogel toolbox based on enzymatically crosslinkable polysaccharides via tyramine (TA) moieties, allowing for rapid and tunable crosslinking with well-defined stiffness and high cell viability. Including gelatin modified with TA moieties (Gel-TA) improved the hydrogels' biological properties; 3 T3 fibroblasts and HUVECs attached to and proliferated on the enriched hydrogels at minute Gel-TA concentrations, in contrast to bare or unmodified gelatin-enriched hydrogels. Moreover, we were able to switch HUVECs from a quiescent to a migratory phenotype simply by altering the ligand concentration, demonstrating the potential to easily control cell fate. In encapsulation studies, Gel-TA significantly improved the metabolic activity of 3 T3 fibroblasts in soft hydrogels. Furthermore, we showed rapid migration and network formation in Gel-TA enriched hydrogels in contrast to a non-migratory behavior in non-enriched polysaccharide hydrogels. Finally, low hydrogel density significantly improves tissue response in vivo with large infiltration and low fibrotic reaction. Further development by adding ECM proteins, peptides, and growth factor adhesion sites will lead to a toolbox for hydrogels tailored toward their desired application.
AB - Hydrogels are receiving increasing attention for their use in 3D cell culture, tissue engineering, and bioprinting applications. Each application places specific mechanical and biological demands on these hydrogels. We developed a hydrogel toolbox based on enzymatically crosslinkable polysaccharides via tyramine (TA) moieties, allowing for rapid and tunable crosslinking with well-defined stiffness and high cell viability. Including gelatin modified with TA moieties (Gel-TA) improved the hydrogels' biological properties; 3 T3 fibroblasts and HUVECs attached to and proliferated on the enriched hydrogels at minute Gel-TA concentrations, in contrast to bare or unmodified gelatin-enriched hydrogels. Moreover, we were able to switch HUVECs from a quiescent to a migratory phenotype simply by altering the ligand concentration, demonstrating the potential to easily control cell fate. In encapsulation studies, Gel-TA significantly improved the metabolic activity of 3 T3 fibroblasts in soft hydrogels. Furthermore, we showed rapid migration and network formation in Gel-TA enriched hydrogels in contrast to a non-migratory behavior in non-enriched polysaccharide hydrogels. Finally, low hydrogel density significantly improves tissue response in vivo with large infiltration and low fibrotic reaction. Further development by adding ECM proteins, peptides, and growth factor adhesion sites will lead to a toolbox for hydrogels tailored toward their desired application.
KW - And metabolic activity
KW - Cell attachment
KW - Co-crosslinking
KW - Enzymatic crosslinkable dextran/hyaluronic acid hydrogels
KW - Gelatin
KW - In vivo tissue response
KW - Migration
KW - 2024 OA procedure
U2 - 10.1016/j.ijbiomac.2023.128843
DO - 10.1016/j.ijbiomac.2023.128843
M3 - Article
C2 - 38104684
AN - SCOPUS:85182278793
SN - 0141-8130
VL - 259
JO - International journal of biological macromolecules
JF - International journal of biological macromolecules
M1 - 128843
ER -