TY - JOUR
T1 - Generating an optimal DTM from airborne laser scanning data for landslide mapping in a tropical forest environment
AU - Razak, K.A.
AU - Santangelo, Michele
AU - van Westen, C.J.
AU - Straatsma, M.
AU - de Jong, Steven M.
PY - 2013
Y1 - 2013
N2 - Landslide inventory maps are fundamental for assessing landslide susceptibility, hazard, and risk. In tropical mountainous environments, mapping landslides is difficult as rapid and dense vegetation growth obscures landslides soon after their occurrence. Airborne laser scanning (ALS) data have been used to construct the digital terrain model (DTM) under dense vegetation, but its reliability for landslide recognition in the tropics remains surprisingly unknown. This study evaluates the suitability of ALS for generating an optimal DTM for mapping landslides in the Cameron Highlands, Malaysia. For the bare-earth extraction, we used hierarchical robust filtering algorithm and a parameterization with three sequential filtering steps. After each filtering step, four interpolations techniques were applied, namely: (i) the linear prediction derived from the SCOP++ (SCP), (ii) the inverse distance weighting (IDW), (iii) the natural neighbor (NEN) and (iv) the topo-to-raster (T2R). We assessed the quality of 12 DTMs in two ways: (1) with respect to 448 field-measured terrain heights and (2) based on the interpretability of landslides. The lowest root-mean-square error (RMSE) was 0.89 m across the landscape using three filtering steps and linear prediction as interpolation method. However, we found that a less stringent DTM filtering unveiled more diagnostic micro-morphological features, but also retained some of vegetation. Hence, a combination of filtering steps is required for optimal landslide interpretation, especially in forested mountainous areas. IDW was favored as the interpolation technique because it combined computational times more reasonably without adding artifacts to the DTM than T2R and NEN, which performed relatively well in the first and second filtering steps, respectively. The laser point density and the resulting ground point density after filtering are key parameters for producing a DTM applicable to landslide identification. The results showed that the ALS-derived DTMs allowed mapping and classifying landslides beneath equatorial mountainous forests, leading to a better understanding of hazardous geomorphic problems in tropical regions.
AB - Landslide inventory maps are fundamental for assessing landslide susceptibility, hazard, and risk. In tropical mountainous environments, mapping landslides is difficult as rapid and dense vegetation growth obscures landslides soon after their occurrence. Airborne laser scanning (ALS) data have been used to construct the digital terrain model (DTM) under dense vegetation, but its reliability for landslide recognition in the tropics remains surprisingly unknown. This study evaluates the suitability of ALS for generating an optimal DTM for mapping landslides in the Cameron Highlands, Malaysia. For the bare-earth extraction, we used hierarchical robust filtering algorithm and a parameterization with three sequential filtering steps. After each filtering step, four interpolations techniques were applied, namely: (i) the linear prediction derived from the SCOP++ (SCP), (ii) the inverse distance weighting (IDW), (iii) the natural neighbor (NEN) and (iv) the topo-to-raster (T2R). We assessed the quality of 12 DTMs in two ways: (1) with respect to 448 field-measured terrain heights and (2) based on the interpretability of landslides. The lowest root-mean-square error (RMSE) was 0.89 m across the landscape using three filtering steps and linear prediction as interpolation method. However, we found that a less stringent DTM filtering unveiled more diagnostic micro-morphological features, but also retained some of vegetation. Hence, a combination of filtering steps is required for optimal landslide interpretation, especially in forested mountainous areas. IDW was favored as the interpolation technique because it combined computational times more reasonably without adding artifacts to the DTM than T2R and NEN, which performed relatively well in the first and second filtering steps, respectively. The laser point density and the resulting ground point density after filtering are key parameters for producing a DTM applicable to landslide identification. The results showed that the ALS-derived DTMs allowed mapping and classifying landslides beneath equatorial mountainous forests, leading to a better understanding of hazardous geomorphic problems in tropical regions.
KW - METIS-295767
KW - IR-90303
KW - ITC-ISI-JOURNAL-ARTICLE
UR - https://ezproxy2.utwente.nl/login?url=http://dx.doi.org/10.1016/j.geomorph.2013.02.021
UR - https://ezproxy2.utwente.nl/login?url=https://webapps.itc.utwente.nl/library/2013/isi/vanwesten_gen.pdf
U2 - 10.1016/j.geomorph.2013.02.021
DO - 10.1016/j.geomorph.2013.02.021
M3 - Article
SN - 0169-555X
VL - 190
SP - 112
EP - 125
JO - Geomorphology
JF - Geomorphology
ER -