Abstract
Motivation: Recent methods for selective sweep detection cast the problem as a classification task and use summary statistics as features to capture region characteristics that are indicative of a selective sweep, thereby being sensitive to confounding factors. Furthermore, they are not designed to perform whole-genome scans or to estimate the extent of the genomic region that was affected by positive selection; both are required for identifying candidate genes and the time and strength of selection.
Results: We present ASDEC (https://github.com/pephco/ASDEC), a neural-network-based framework that can scan whole genomes for selective sweeps. ASDEC achieves similar classification performance to other convolutional neural network-based classifiers that rely on summary statistics, but it is trained 10× faster and classifies genomic regions 5× faster by inferring region characteristics from the raw sequence data directly. Deploying ASDEC for genomic scans achieved up to 15.2× higher sensitivity, 19.4× higher success rates, and 4× higher detection accuracy than state-of-the-art methods. We used ASDEC to scan human chromosome 1 of the Yoruba population (1000Genomes project), identifying nine known candidate genes.
Results: We present ASDEC (https://github.com/pephco/ASDEC), a neural-network-based framework that can scan whole genomes for selective sweeps. ASDEC achieves similar classification performance to other convolutional neural network-based classifiers that rely on summary statistics, but it is trained 10× faster and classifies genomic regions 5× faster by inferring region characteristics from the raw sequence data directly. Deploying ASDEC for genomic scans achieved up to 15.2× higher sensitivity, 19.4× higher success rates, and 4× higher detection accuracy than state-of-the-art methods. We used ASDEC to scan human chromosome 1 of the Yoruba population (1000Genomes project), identifying nine known candidate genes.
Original language | English |
---|---|
Pages (from-to) | i194-i203 |
Number of pages | 10 |
Journal | Bioinformatics |
Volume | 39 |
Issue number | Supplement1 |
Early online date | 30 Jun 2023 |
DOIs | |
Publication status | Published - Jun 2023 |