Giant optical gain in a rare-earth-ion-doped waveguide amplifier

D. Geskus, S. Aravazhi, Sonia Maria García Blanco, Markus Pollnau

    Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademic

    23 Downloads (Pure)


    For optical amplification, typically rare-earth-ion (RE) doped fiber amplifiers (RDFA) or semiconductor optical amplifiers (SOAs) are selected. Despite the weak transition cross-sections of RE ions and their low doping level in silica fibers, resulting in very low gain per unit length, the extremely long interaction lengths realized in fibers can lead to significant overall gain. SOAs can deliver similarly high overall gain over much shorter distances, which makes them suitable for providing on-chip gain. Very high material gain in the nanometer-wide recombination region of a III-V semiconductor, but small overlap with the usually µm-sized signal beam results in a modal gain of several hundred dB/cm. In contrast, the gain per unit length in RE-doped integrated waveguides has hardly exceeded a few dB/cm. Here we demonstrate an ultra-high modal gain of 950 dB/cm in a RE-doped waveguide amplifier, comparable to the modal gain reported for SOAs. The potassium double tungstates KGd(WO4)2, KY(WO4)2, and KLu(WO4)2 are excellent host materials for RE-doped lasers, partly thanks to the high transition cross-sections of RE ions in these hosts. In 2006, the first planar KY(WO4)2:Yb3+ waveguide laser was demonstrated. Co-doping the layer with Gd3+ and Lu3+ ions offers the possibility for lattice matching with the undoped KY(WO4)2 substrate and a significantly enhanced refractive index contrast, hence improved mode confinement. Microstructuring by Ar+ beam etching resulted in channel waveguides, in which lasing with 418 mW output power at 1023 nm and 71% slope efficiency vs. launched pump power was demonstrated. Replacing Y3+ in the layer completely by Gd3+ and Yb3+ ions results in highly doped channel waveguides with a refractive-index contrast of >2 x 10-2. These novel dielectric micro-structures combine a high dopant concentration, large transition cross-sections, and strong light confinement, all features that are crucial for achieving high optical gain, in a single device. When pumping such a KGd0.447Lu0.078Yb0.475(WO4)2 channel waveguide with a 932-nm Ti:Sapphire laser via a microscope objective, high inversion of the Yb3+ system is obtained. Signal light at the zero-phonon line at 980.6 nm, which is the wavelength of highest absorption and emission cross-section, exhibits a small-signal modal gain of 950 dB/cm, exceeding the gain per unit length previously reported in RE-doped materials by two orders of magnitude, thus paving the way for applications of on-chip integrated RE-doped amplifiers.
    Original languageEnglish
    Title of host publicationInternational Laser Physics Workshop (LPHYS '11)
    Place of PublicationMoscow
    PublisherRAS - General Physics Institute
    PagesPaper 4.2.4
    Number of pages1
    Publication statusPublished - Jul 2011
    Event20th International Laser Physics Workshop, LPHYS 2011 - Hotel Hollywood, Sarajevo, Bosnia and Herzegovina
    Duration: 11 Jul 201115 Jul 2011
    Conference number: 20


    Conference20th International Laser Physics Workshop, LPHYS 2011
    Abbreviated titleLPHYS
    CountryBosnia and Herzegovina
    Other11-15 July 2011
    Internet address


    • IOMS-APD: Active Photonic Devices

    Fingerprint Dive into the research topics of 'Giant optical gain in a rare-earth-ion-doped waveguide amplifier'. Together they form a unique fingerprint.

    Cite this