Abstract
Glacier mapping is essential for studying and monitoring the impacts of climate change. However, several challenges such as debris-covered ice and highly variable landscapes across glacierized regions worldwide complicate large-scale glacier mapping in a fully-automated manner. This work presents a novel hybrid CNN-transformer model (GlaViTU) for multi-regional glacier mapping. Our model outperforms three baseline models - SETR-B/16, ResU-Net and TransU-Net - achieving a higher mean IoU of 0.875 and demonstrates better generalization ability. The proposed model is also parameter-efficient, with approximately 10 and 3 times fewer parameters than SETR-B/16 and ResU-Net, respectively. Our results provide a solid foundation for future studies on the application of deep learning methods for global glacier mapping. To facilitate reproducibility, we have shared our data set, codebase and pretrained models on GitHub at https://github.com/konstantin-a-maslov/GlaViTU-IGARSS2023.
Original language | English |
---|---|
Title of host publication | IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium, Proceedings |
Publisher | IEEE |
Pages | 1233-1236 |
Number of pages | 4 |
ISBN (Electronic) | 9798350320107 |
DOIs | |
Publication status | Published - 2023 |
Event | 43rd IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2023 - Pasadena Convention Center, Pasadena, United States Duration: 16 Jul 2023 → 21 Jul 2023 Conference number: 43 https://2023.ieeeigarss.org/index.php |
Publication series
Name | International Geoscience and Remote Sensing Symposium (IGARSS) |
---|---|
Volume | 2023-July |
Conference
Conference | 43rd IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2023 |
---|---|
Abbreviated title | IGARSS 2023 |
Country/Territory | United States |
City | Pasadena |
Period | 16/07/23 → 21/07/23 |
Internet address |
Keywords
- convolutional neural network
- deep learning
- Glacier mapping
- vision transformer
- 2024 OA procedure