Grey water footprint reduction in irrigated crop production: Effect of nitrogen application rate, nitrogen form, tillage practice and irrigation strategy

Abebe D. Chukalla* (Corresponding Author), Maarten S. Krol, Arjen Y. Hoekstra

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

71 Citations (Scopus)
172 Downloads (Pure)

Abstract

Grey water footprint (WF) reduction is essential given the increasing water pollution associated with food production and the limited assimilation capacity of fresh water. Fertilizer application can contribute significantly to the grey WF as a result of nutrient leaching to groundwater and runoff to streams. The objective of this study is to explore the effect of the nitrogen application rate (from 25 to 300kNha-1), nitrogen form (inorganic N or manure N), tillage practice (conventional or no-tillage) and irrigation strategy (full or deficit irrigation) on the nitrogen load to groundwater and surface water, crop yield and the N-related grey water footprint of crop production by a systematic model-based assessment. As a case study, we consider irrigated maize grown in Spain on loam soil in a semi-arid environment, whereby we simulate the 20-year period 1993-2012. The water and nitrogen balances of the soil and plant growth at the field scale were simulated with the Agricultural Policy Environmental eXtender (APEX) model. As a reference management package, we assume the use of inorganic N (nitrate), conventional tillage and full irrigation. For this reference, the grey WF at a usual N application rate of 300 kgNha- (with crop yield of 11.1 t ha-/ is 1100m3 t-, which can be reduced by 91% towards 95m3 t- when the N application rate is reduced to 50 kgNha- (with a yield of 3.7 t ha-/. The grey WF can be further reduced to 75m3 t- by shifting the management package to manure N and deficit irrigation (with crop yield of 3.5 t ha-/. Although water pollution can thus be reduced dramatically, this comes together with a great yield reduction, and a much lower water productivity (larger green plus blue WF) as well. The overall (green, blue and grey) WF per tonne is found to be minimal at an N application rate of 150 kgNha-, with manure, no-tillage and deficit irrigation (with crop yield of 9.3 t ha-/. The paper shows that there is a trade-off between grey WF and crop yield, as well as a trade-off between reducing water pollution (grey WF) and water consumption (green and blue WF). Applying manure instead of inorganic N and deficit instead of full irrigation are measures that reduce both water pollution and water consumption with a 16% loss in yield.

Original languageEnglish
Pages (from-to)3245-3259
Number of pages15
JournalHydrology and earth system sciences
Volume22
Issue number6
DOIs
Publication statusPublished - 11 Jun 2018

Fingerprint

Dive into the research topics of 'Grey water footprint reduction in irrigated crop production: Effect of nitrogen application rate, nitrogen form, tillage practice and irrigation strategy'. Together they form a unique fingerprint.

Cite this