TY - UNPB
T1 - Handling Large Discrete Action Spaces via Dynamic Neighborhood Construction
AU - Akkerman, Fabian
AU - Luy, Julius
AU - Heeswijk, Wouter van
AU - Schiffer, Maximilian
PY - 2023/5/31
Y1 - 2023/5/31
N2 - Large discrete action spaces remain a central challenge for reinforcement learning methods. Such spaces are encountered in many real-world applications, e.g., recommender systems, multi-step planning, and inventory replenishment. The mapping of continuous proxies to discrete actions is a promising paradigm for handling large discrete action spaces. Existing continuous-to-discrete mapping approaches involve searching for discrete neighboring actions in a static pre-defined neighborhood, which requires discrete neighbor lookups across the entire action space. Hence, scalability issues persist. To mitigate this drawback, we propose a novel Dynamic Neighborhood Construction (DNC) method, which dynamically constructs a discrete neighborhood to map the continuous proxy, thus efficiently exploiting the underlying action space. We demonstrate the robustness of our method by benchmarking it against three state-of-the-art approaches designed for large discrete action spaces across three different environments. Our results show that DNC matches or outperforms state-of-the-art approaches while being more computationally efficient. Furthermore, our method scales to action spaces that so far remained computationally intractable for existing methodologies.
AB - Large discrete action spaces remain a central challenge for reinforcement learning methods. Such spaces are encountered in many real-world applications, e.g., recommender systems, multi-step planning, and inventory replenishment. The mapping of continuous proxies to discrete actions is a promising paradigm for handling large discrete action spaces. Existing continuous-to-discrete mapping approaches involve searching for discrete neighboring actions in a static pre-defined neighborhood, which requires discrete neighbor lookups across the entire action space. Hence, scalability issues persist. To mitigate this drawback, we propose a novel Dynamic Neighborhood Construction (DNC) method, which dynamically constructs a discrete neighborhood to map the continuous proxy, thus efficiently exploiting the underlying action space. We demonstrate the robustness of our method by benchmarking it against three state-of-the-art approaches designed for large discrete action spaces across three different environments. Our results show that DNC matches or outperforms state-of-the-art approaches while being more computationally efficient. Furthermore, our method scales to action spaces that so far remained computationally intractable for existing methodologies.
KW - Reinforcement Learning
KW - Large action spaces
KW - Simulated Annealing
M3 - Preprint
BT - Handling Large Discrete Action Spaces via Dynamic Neighborhood Construction
PB - ArXiv.org
ER -