@inproceedings{1e11f14bc7ac4e1c86e97b7cab25fefa,
title = "Handling Uncertainty and Ignorance in Databases: A Rule to Combine Dependent Data",
abstract = "In many applications, uncertainty and ignorance go hand in hand. Therefore, to deliver database support for effective decision making, an integrated view of uncertainty and ignorance should be taken. So far, most of the efforts attempted to capture uncertainty and ignorance with probability theory. In this paper, we discuss the weakness to capture ignorance with probability theory, and propose an approach inspired by the Dempster-Shafer theory to capture uncertainty and ignorance. Then, we present a rule to combine dependent data that are represented in different relations. Such a rule is required to perform joins in a consistent way. We illustrate that our rule is able to solve the so-called problem of information loss, which was considered as an open problem so far.",
keywords = "METIS-238694, IR-63575, EWI-7538",
author = "R.S. Choenni and H.E. Blok and Erik Leertouwer",
note = "10.1007/11733836_23 ; 11th International Conference on Database Systems for Advanced Applications, DASFAA 2006 ; Conference date: 12-04-2006 Through 15-04-2006",
year = "2006",
month = apr,
doi = "10.1007/11733836_23",
language = "Undefined",
isbn = "978-3-540-33337-1",
series = "Lecture Notes in Computer Science",
publisher = "Springer",
pages = "310--324",
editor = "Lee, {Mong Li} and Kian-Lee Tan and Vilas Wuwongse",
booktitle = "Proceedings of the 11th International Conference on Database Systems for Advanced Applications (DASFAA 2006)",
address = "Germany",
}