TY - JOUR
T1 - Height-Adaptive Human Gait Model Through Radar-Driven Pipeline With Two Co-Located mmWave MIMO Radars
AU - Veld, Roy
AU - Kokkeler, Andre B.J.
AU - Chiumento, Alessandro
AU - Miao, Yang
N1 - Publisher Copyright:
© 2013 IEEE.
Financial transaction number:
6100028694
PY - 2024/1/5
Y1 - 2024/1/5
N2 - In this paper, a methodology for developing a human walking model adapted to the individual measured by radar was proposed. The fundamental parameters used in the model are the gait parameters and physical dimensions. Empirical validation of the proposed methodology is undertaken, involving the acquisition of data using a 77-GHz FMCW radar. The data is collected from three distinct individuals walking five different trajectories with respect to the radar. Moreover, the gait parameter estimation accuracy is evaluated for the different walking trajectories of the target. The studied gait parameters are speed, step length, and step frequency. These could be estimated with mean errors up to 0.077 m/s, 9.3 cm, and 0.128 Hz for all trajectories, respectively. Nevertheless, these errors diminish to 0.022 m/s, 2.2 cm and 0.03 Hz, respectively when the targets walk in a straight trajectory aligned with the radar beam. Moreover, the feasibility of estimating body part dimensions directly from the radar data is investigated. It was found that only the total human height could be directly estimated using the employed hardware. Except for the tallest participant of 2.01 m, the height could be estimated with a mean absolute error up to 10.9 cm. Enhanced hardware configurations or the integration of machine learning techniques may improve the accuracy of body part dimension estimations.
AB - In this paper, a methodology for developing a human walking model adapted to the individual measured by radar was proposed. The fundamental parameters used in the model are the gait parameters and physical dimensions. Empirical validation of the proposed methodology is undertaken, involving the acquisition of data using a 77-GHz FMCW radar. The data is collected from three distinct individuals walking five different trajectories with respect to the radar. Moreover, the gait parameter estimation accuracy is evaluated for the different walking trajectories of the target. The studied gait parameters are speed, step length, and step frequency. These could be estimated with mean errors up to 0.077 m/s, 9.3 cm, and 0.128 Hz for all trajectories, respectively. Nevertheless, these errors diminish to 0.022 m/s, 2.2 cm and 0.03 Hz, respectively when the targets walk in a straight trajectory aligned with the radar beam. Moreover, the feasibility of estimating body part dimensions directly from the radar data is investigated. It was found that only the total human height could be directly estimated using the employed hardware. Except for the tallest participant of 2.01 m, the height could be estimated with a mean absolute error up to 10.9 cm. Enhanced hardware configurations or the integration of machine learning techniques may improve the accuracy of body part dimension estimations.
KW - Doppler signatures
KW - FMCW radar
KW - Human gait
KW - Millimeter-wave
KW - Walking model
UR - http://www.scopus.com/inward/record.url?scp=85182373839&partnerID=8YFLogxK
U2 - 10.1109/ACCESS.2024.3350354
DO - 10.1109/ACCESS.2024.3350354
M3 - Article
AN - SCOPUS:85182373839
SN - 2169-3536
VL - 12
SP - 7199
EP - 7223
JO - IEEE Access
JF - IEEE Access
ER -