TY - JOUR
T1 - Heritability of regional and global brain structure at the onset of puberty: A magnetic resonance imaging study in 9‐year‐old twin pairs
AU - Peper, Jiska S.
AU - Schnack, Hugo G.
AU - Brouwer, Rachel M.
AU - van Baal, G. Caroline M.
AU - Pjetri, Eneda
AU - Szekely, Eszter
AU - van Leeuwen, Marieke
AU - van den Berg, Stéphanie Martine
AU - Collins, D. Louis
AU - Evans, Alan C.
AU - Boomsma, Dorret I.
AU - Kahn, Rene S.
AU - Hulshoff Pol, Hilleke E.
PY - 2009
Y1 - 2009
N2 - Puberty represents the phase of sexual maturity, signaling the change from childhood into adulthood. During childhood and adolescence, prominent changes take place in the brain. Recently, variation in frontal, temporal, and parietal areas was found to be under varying genetic control between 5 and 19 years of age. However, at the onset of puberty, the extent to which variation in brain structures is influenced by genetic factors (heritability) is not known. Moreover, whether a direct link between human pubertal development and brain structure exists has not been studied. Here, we studied the heritability of brain structures at 9 years of age in 107 monozygotic and dizygotic twin pairs (N = 210 individuals) using volumetric MRI and voxel-based morphometry. Children showing the first signs of secondary sexual characteristics (N = 47 individuals) were compared with children without these signs, based on Tanner-stages. High heritabilities of intracranial, total brain, cerebellum, and gray and white matter volumes (up to 91%) were found. Regionally, the posterior fronto-occipital, corpus callosum, and superior longitudinal fascicles (up to 93%), and the amygdala, superior frontal and middle temporal cortices (up to 83%) were significantly heritable. The onset of secondary sexual characteristics of puberty was associated with decreased frontal and parietal gray matter densities. Thus, in 9-year-old children, global brain volumes, white matter density in fronto-occipital and superior longitudinal fascicles, and gray matter density of (pre-)frontal and temporal areas are highly heritable. Pubertal development may be directly involved in the decreases in gray matter areas that accompany the transition of our brains from childhood into adulthood
AB - Puberty represents the phase of sexual maturity, signaling the change from childhood into adulthood. During childhood and adolescence, prominent changes take place in the brain. Recently, variation in frontal, temporal, and parietal areas was found to be under varying genetic control between 5 and 19 years of age. However, at the onset of puberty, the extent to which variation in brain structures is influenced by genetic factors (heritability) is not known. Moreover, whether a direct link between human pubertal development and brain structure exists has not been studied. Here, we studied the heritability of brain structures at 9 years of age in 107 monozygotic and dizygotic twin pairs (N = 210 individuals) using volumetric MRI and voxel-based morphometry. Children showing the first signs of secondary sexual characteristics (N = 47 individuals) were compared with children without these signs, based on Tanner-stages. High heritabilities of intracranial, total brain, cerebellum, and gray and white matter volumes (up to 91%) were found. Regionally, the posterior fronto-occipital, corpus callosum, and superior longitudinal fascicles (up to 93%), and the amygdala, superior frontal and middle temporal cortices (up to 83%) were significantly heritable. The onset of secondary sexual characteristics of puberty was associated with decreased frontal and parietal gray matter densities. Thus, in 9-year-old children, global brain volumes, white matter density in fronto-occipital and superior longitudinal fascicles, and gray matter density of (pre-)frontal and temporal areas are highly heritable. Pubertal development may be directly involved in the decreases in gray matter areas that accompany the transition of our brains from childhood into adulthood
U2 - 10.1002/hbm.20660
DO - 10.1002/hbm.20660
M3 - Article
SN - 1065-9471
VL - 30
SP - 2184
EP - 2196
JO - Human brain mapping
JF - Human brain mapping
IS - 7
ER -