Hierarchical Networks of Casein Proteins: An Elasticity Study Based on Atomic Force Microscopy

V.I. Uricanu, Michael H.G. Duits, J. Mellema

Research output: Contribution to journalArticleAcademic

55 Citations (Scopus)
8 Downloads (Pure)


2D- and 3D-atomic force microscopy (AFM) experiments were performed on single casein micelles (CM) in native state, submerged in liquid, using a home-built AFM instrument. The micelles were immobilized via carbodiimide chemistry to a self-assembled monolayer supported on gold-coated slides. Off-line data analysis allowed the extraction of both surface topography and elastic properties. Relative Young moduli (E*) were derived from force-vs-indentation curves, using the Hertz theory. The obtained E* values were found to increase with CM diameter, following a straight line dependence. The data showed that temperature, via its influence on both the protein-protein interactions and the composition of the micelle, has a clear effect on the mechanical properties of the CMs: higher temperatures and lower serum casein concentrations result in stiffer micelles. For pH 5.6, effecting calcium phosphate release from the micelles by decreasing the pH does not have a large effect on CM stiffness. On decrease of the pH below 5.0, particulate gels and multilayers were obtained. Their measured elasticity (expressed by an equivalent G'AFM) agrees remarkably well with the storage moduli as measured with a conventional rheometer. Compared to single micelles, gels from nonheated CM suspensions are about 3 orders of magnitude softer. The "softness" of these gels (measured under compression or shear) therefore must come from the microscopic and/or mesoscopic links rather than the micelles themselves.
Original languageUndefined
Pages (from-to)5079-5090
Issue number12
Publication statusPublished - 2004


  • IR-59365

Cite this