Abstract
We present a scalable, high-order implicit large-eddy simulation (ILES) approach for incompressible transitional flows. This method employs the mass-conserving mixed stress (MCS) method for discretizing the Navier-Stokes equations. The MCS method's low dissipation characteristics, combined with the introduced operator-splitting solution technique, result in a high-order solver optimized for efficient and parallel computation of under-resolved turbulent flows. We further enhance the inherent capabilities of the ILES model by incorporating high-order upwind fluxes and are examining its approximation behaviour in transitional aerodynamic flow problems. In this study, we use flows over the Eppler 387 airfoil at Reynolds numbers up to $3 \cdot 10^5$ as benchmarks for our simulations.
Original language | English |
---|---|
Publisher | ArXiv.org |
DOIs | |
Publication status | Published - 13 Aug 2024 |
Keywords
- cs.CE