Historical Developments of Pyrolysis Reactors: A Review

J. A. Garcia-Nunez, M.R. Pelaez-Samaniego, M. E. Garcia-Perez, I. Fonts, J. Abrego, R. J.M. Westerhof, M. Garcia Perez

Research output: Contribution to journalReview articleAcademicpeer-review

115 Citations (Scopus)


This paper provides a review of pyrolysis technologies, focusing on reactor designs and companies commercializing these technologies. The renewed interest in pyrolysis is driven by the potential to convert lignocellulosic materials into bio-oil and biochar and the use of these intermediates for the production of biofuels, biochemicals, and engineered biochars for environmental services. This review presents slow, intermediate, fast, and microwave pyrolysis as complementary technologies that share some commonalities in their designs. While slow pyrolysis technologies (traditional carbonization kilns) use wood trunks to produce char chunks for cooking, fast pyrolysis systems process small particles to maximize bio-oil yield. The realization of the environmental issues associated with the use of carbonization technologies and the technical difficulties of operating fast pyrolysis reactors using sand as the heating medium and large volumes of carrier gas, as well as the problems with refining the resulting highly oxygenated oils, are forcing the thermochemical conversion community to rethink the design and use of these reactors. Intermediate pyrolysis reactors (also known as converters) offer opportunities for the large-scale balanced production of char and bio-oil. The capacity of these reactors to process forest and agricultural wastes without much preprocessing is a clear advantage. Microwave pyrolysis is an option for modular small autonomous devices for solid waste management. Herein, the evolution of pyrolysis technology is presented from a historical perspective; thus, old and new innovative designs are discussed together.

Original languageEnglish
Pages (from-to)5751-5775
Number of pages25
JournalEnergy & fuels
Issue number6
Publication statusPublished - 15 Jun 2017


Dive into the research topics of 'Historical Developments of Pyrolysis Reactors: A Review'. Together they form a unique fingerprint.

Cite this