### Abstract

We are interested in the numerical modeling of wave-current interactions around surf zones at beaches. Any model that aims to predict the onset of wave breaking at the breaker line needs to capture both the nonlinearity of the wave and its dispersion. We have therefore formulated the Hamiltonian dynamics of a new water wave model, incorporating both the shallow water and pure potential flow water wave models as limiting systems. It is based on a Hamiltonian reformulation of the variational principle derived by Cotter and Bokhove (2010) by using more convenient variables. Our new model has a three-dimensional velocity field consisting of the full three-dimensional potential velocity field plus extra horizontal velocity components. This implies that only the vertical vorticity component is nonzero. Boussinesq-type simplifications of the vertical flow profile follow directly from the new Hamiltonian formulation, such as extensions of variational Boussinesq models and Green-Naghdi equations. Since the full water wave dispersion is retained in the new model, waves can break. We therefore explore a variational approach to derive jump conditions for the new model and its Boussinesq simplifications.

Original language | Undefined |
---|---|

Place of Publication | Enschede |

Publisher | University of Twente, Department of Applied Mathematics |

Number of pages | 14 |

Publication status | Published - Jan 2013 |

### Keywords

- METIS-296232
- EWI-22919
- Variational principles
- Water waves

## Cite this

Gagarina, E., van der Vegt, J. J. W., & Bokhove, O. (2013).

*Horizontal circulation and jumps in Hamiltonian wave models*. Enschede: University of Twente, Department of Applied Mathematics.