Abstract
Word clouds are a summarised representation of a document’s text, similar to tag clouds which summarise the tags assigned to documents. Word clouds are similar to language models in the sense that they represent a document by its word distribution. In this paper we investigate the differences between word cloud and language modelling approaches, and specifically whether effective language modelling techniques also improve word clouds. We evaluate the quality of the language model using a system evaluation test bed, and evaluate the quality of the resulting word cloud with a user study. Our experiments show that different language modelling techniques can be applied to improve a standard word cloud that uses a TF weighting scheme in combination with stopword removal. Including bigrams in the word clouds and a parsimonious term weighting scheme are the most effective in both the system evaluation and the user study.
Original language | Undefined |
---|---|
Title of host publication | 32nd European Conference on Information Retrieval (ECIR 2010) |
Place of Publication | Berlin |
Publisher | Springer |
Pages | 556-568 |
Number of pages | 13 |
ISBN (Print) | 978-3-642-12274-3 |
DOIs | |
Publication status | Published - Mar 2010 |
Event | 32nd European Conference on Information Retrieval, ECIR 2010: (IR Resarch) - Milton Keynes, United Kingdom Duration: 28 Mar 2010 → 31 Mar 2010 Conference number: 32 |
Publication series
Name | Lecture Notes in Computer Science |
---|---|
Publisher | Springer Verlag |
Volume | 5993 |
ISSN (Print) | 0302-9743 |
ISSN (Electronic) | 1611-3349 |
Conference
Conference | 32nd European Conference on Information Retrieval, ECIR 2010 |
---|---|
Abbreviated title | ECIR |
Country/Territory | United Kingdom |
City | Milton Keynes |
Period | 28/03/10 → 31/03/10 |
Keywords
- METIS-271094
- EWI-18654
- IR-74078