TY - JOUR

T1 - How gravity and size affect the acceleration statistics of bubbles in turbulence

AU - N. Prakash, Vivek

AU - Tagawa, Yoshiyuki

AU - Calzavarini, Enrico

AU - Martinez Mercado, Julián

AU - Toschi, Federico

AU - Lohse, Detlef

AU - Sun, Chao

PY - 2012

Y1 - 2012

N2 - We report the results of the first systematic Lagrangian experimental investigation in a previously unexplored regime of very light (air bubbles in water) and large (D/η Gt 1) particles in turbulence. Using a traversing camera setup and particle tracking, we study the Lagrangian acceleration statistics of ~3 mm diameter (D) bubbles in a water tunnel with nearly homogeneous and isotropic turbulence generated by an active grid. The Reynolds number (Reλ) is varied from 145 to 230, resulting in size ratios, D/η, in the range of 7.3–12.5, where η is the Kolmogorov length scale. The experiments reveal that gravity increases the acceleration variance and reduces the intermittency of the probability density function (PDF) in the vertical direction. Once the gravity offset has been subtracted, the variances of both the horizontal and vertical acceleration components are about 5 ± 2 times larger than those measured in the same flow for fluid tracers. Moreover, for these light particles, the experimental acceleration PDF shows a substantial reduction of intermittency at growing size ratios, in contrast with neutrally buoyant or heavy particles. All these results closely match numerical simulations of finite-sized bubbles with the Faxén corrections.

AB - We report the results of the first systematic Lagrangian experimental investigation in a previously unexplored regime of very light (air bubbles in water) and large (D/η Gt 1) particles in turbulence. Using a traversing camera setup and particle tracking, we study the Lagrangian acceleration statistics of ~3 mm diameter (D) bubbles in a water tunnel with nearly homogeneous and isotropic turbulence generated by an active grid. The Reynolds number (Reλ) is varied from 145 to 230, resulting in size ratios, D/η, in the range of 7.3–12.5, where η is the Kolmogorov length scale. The experiments reveal that gravity increases the acceleration variance and reduces the intermittency of the probability density function (PDF) in the vertical direction. Once the gravity offset has been subtracted, the variances of both the horizontal and vertical acceleration components are about 5 ± 2 times larger than those measured in the same flow for fluid tracers. Moreover, for these light particles, the experimental acceleration PDF shows a substantial reduction of intermittency at growing size ratios, in contrast with neutrally buoyant or heavy particles. All these results closely match numerical simulations of finite-sized bubbles with the Faxén corrections.

U2 - 10.1088/1367-2630/14/10/105017

DO - 10.1088/1367-2630/14/10/105017

M3 - Article

VL - 14

JO - New journal of physics

JF - New journal of physics

SN - 1367-2630

M1 - 105017

ER -