How to build vegetation patches in hydraulic studies: a hydrodynamic-ecological perspective on a biological object

Loreta Cornacchia, G. Lapetoule, Sofia Licci, H. Basquin, Sara Puijalon

Research output: Contribution to journalArticleAcademicpeer-review

1 Citation (Scopus)
15 Downloads (Pure)


Vegetation in freshwater and coastal ecosystems modifies flows, retains sediment, protects banks and shorelines from erosion. Hydraulic laboratory studies with live vegetation or artificial plant mimics, or numerical models with abstracted patches, are often used to quantify the effects of vegetation on water flow and sedimentation. However, the choice of plant and patch characteristics is often not supported by field observations of patch dimensions, density or spacing between consecutive patches. The discrepancy between plants in natural conditions and in flume experiments or numerical studies may affect the relevance of these findings for natural ecosystems. In this study, we provide guidelines for building realistic vegetation patches in hydraulic studies. We collected data on four species of fully submerged freshwater aquatic macrophytes that can grow into well-defined patches. We considered three relevant levels: individual plants (inside patches), isolated patches and multiple neighbouring patches. At the plant level, we observed significant differences in biomechanical traits (Young’s modulus, flexural stiffness), resulting in stem Cauchy numbers ranging from 85.25 to 325.84, and leaf Cauchy numbers from 163.81 to 2003.97. At the patch level, we found significant relationships between patch length, width and height, showing covariation among different patch characteristics. The relationships among patch dimensions differed significantly among sampling sites for three of the four species, suggesting high intraspecific variability in patch sizes. By providing a first set of guidelines for choosing correct and ecologically relevant plant characteristics, this dataset aims to improve our understanding of the complex processes occurring inside and around submerged vegetated patches.
Original languageEnglish
Pages (from-to)105-120
Number of pages16
JournalJournal of Ecohydraulics
Issue number2
Early online date13 Feb 2023
Publication statusPublished - 3 Jul 2023


Dive into the research topics of 'How to build vegetation patches in hydraulic studies: a hydrodynamic-ecological perspective on a biological object'. Together they form a unique fingerprint.

Cite this