How to Compare Homology Concepts! Class Reasoning about Evolution and Morphology in Phylogenetics and Developmental Biology

Research output: Contribution to journalArticleAcademicpeer-review

3 Citations (Scopus)

Abstract

Many of the current comparisons of taxic phylogenetic and biological homology in the context of morphology focus on what are seen as categorical distinctions between the two concepts. The first, it is claimed, identifies historical patterns of conservation and variation relating taxa; the second provides a causal framework for the explanation of this conservation and variation. This leads to the conclusion that the two need not be placed in conflict and are in fact compatible, having non-competing epistemic purposes or mapping the same extensions in the form of monophyletic groupings (see Roth, The biological basis of homology 1–26, 1988; Sluys, J Zool Syst Evol Res 34:145–152, 1996; Abouheif, Trends Ecol Evol 12:405–408, 1997; Brigandt, J Exp Zool 299:9–17, 2003, Biol Philos 22:709–725, 2007; Assis and Brigandt, Evol Biol 36:248–255, 2009). This article argues that moves in this direction miss the essential disagreement between these concepts as they have been developed in the context of the debate concerning the best concept for evolutionary investigation. We should rather see these concepts employing a common fundamental methodological approach to homology, but disagreeing about how to apply the methodology effectively. Both concepts employ class reasoning, which pursues homologies as units of generalization—more precisely, as sources of reliable and relevant group-bound information in the form of shared underlying causes. The dispute can be better understood by two poles that structure such reasoning: the need for a reliable basis for projections about the causal history of shared structures, and the desire to identify homologous characters with more informative and specific causal information relevant to generalizing about evolutionary processes. Judgments in favor of one or the other in turn have affected the scope or extension of these competing homology concepts.
Original languageEnglish
Pages (from-to)141-153
JournalBiological Theory
Volume6
Issue number2
DOIs
Publication statusPublished - 2012
Externally publishedYes

Keywords

  • n/a OA procedure

Fingerprint

Dive into the research topics of 'How to Compare Homology Concepts! Class Reasoning about Evolution and Morphology in Phylogenetics and Developmental Biology'. Together they form a unique fingerprint.

Cite this