TY - GEN
T1 - How to effectively obtain metadata from remote sensing big data?
AU - Körting, T.S.
AU - Namikawa, L.
AU - Fonseca, L.M.G.
AU - Felgueiras, C.A.
N1 - Conference code: 6
PY - 2016/9/14
Y1 - 2016/9/14
N2 - What can be considered big data when dealing with remote sensing imagery? In general terms, big data is defined as data requiring high management capabilities characterized by 3 V’s: Volume, Velocity and Variety. In the past, (e.g. 1975), considering the computational and databases resources available, a series of Landsat-1 imagery from the same region could be considered big data. Nowadays, several satellites are available, and they produce massive amounts of data. Certainly, an image data set obtained by a single satellite, for aspecific region and along time, fills the 3 V’s requirements to be considered big data as well. In order to deal with remote sensing big data, we propose to explore the generation of metadata based on the detection of simple features. Besides the intrinsic geographic information on every remote sensing scene, no additional metadata is usually considered. We propose basic image processing algorithms to detect basic well-known patterns, and include them as tags, such as cloud, shadow, stadium, vegetation, and water, according to what is detectable at each spatial resolution. In this work we show preliminary results using imagery from RapidEye sensor, with 5 meter spatial resolution, composed by two full coverages of Brazil with RapidEye multispectral imagery (around 40k scenes).
AB - What can be considered big data when dealing with remote sensing imagery? In general terms, big data is defined as data requiring high management capabilities characterized by 3 V’s: Volume, Velocity and Variety. In the past, (e.g. 1975), considering the computational and databases resources available, a series of Landsat-1 imagery from the same region could be considered big data. Nowadays, several satellites are available, and they produce massive amounts of data. Certainly, an image data set obtained by a single satellite, for aspecific region and along time, fills the 3 V’s requirements to be considered big data as well. In order to deal with remote sensing big data, we propose to explore the generation of metadata based on the detection of simple features. Besides the intrinsic geographic information on every remote sensing scene, no additional metadata is usually considered. We propose basic image processing algorithms to detect basic well-known patterns, and include them as tags, such as cloud, shadow, stadium, vegetation, and water, according to what is detectable at each spatial resolution. In this work we show preliminary results using imagery from RapidEye sensor, with 5 meter spatial resolution, composed by two full coverages of Brazil with RapidEye multispectral imagery (around 40k scenes).
U2 - 10.3990/2.447
DO - 10.3990/2.447
M3 - Conference contribution
SN - 978-90-365-4201-2
BT - Proceedings of GEOBIA 2016 : Solutions and synergies, 14-16 September 2016, Enschede, Netherlands
A2 - Kerle, N.
A2 - Gerke, M.
A2 - Lefevre, S.
PB - University of Twente, Faculty of Geo-Information Science and Earth Observation (ITC)
CY - Enschede
T2 - 6th International Conference on Geographic Object-Based Image Analysis, GEOBIA 2016
Y2 - 14 September 2016 through 16 September 2016
ER -