### Abstract

Original language | English |
---|---|

Article number | 031402 |

Number of pages | 29 |

Journal | Physical review E: Statistical, nonlinear, and soft matter physics |

Volume | 74 |

Issue number | 3 |

DOIs | |

Publication status | Published - 2006 |

### Fingerprint

### Keywords

- IR-59076
- METIS-234341

### Cite this

*Physical review E: Statistical, nonlinear, and soft matter physics*,

*74*(3), [031402]. https://doi.org/10.1103/PhysRevE.74.031402

}

*Physical review E: Statistical, nonlinear, and soft matter physics*, vol. 74, no. 3, 031402. https://doi.org/10.1103/PhysRevE.74.031402

**Hydrodynamic interactions and Brownian forces in colloidal suspensions : coarse-graing over time and length scales.** / Padding, J.T.; Louis, A.A.

Research output: Contribution to journal › Article › Academic › peer-review

TY - JOUR

T1 - Hydrodynamic interactions and Brownian forces in colloidal suspensions

T2 - coarse-graing over time and length scales

AU - Padding, J.T.

AU - Louis, A.A.

PY - 2006

Y1 - 2006

N2 - We describe in detail how to implement a coarse-grained hybrid molecular dynamics and stochastic rotation dynamics simulation technique that captures the combined effects of Brownian and hydrodynamic forces in colloidal suspensions. The importance of carefully tuning the simulation parameters to correctly resolve the multiple time and length scales of this problem is emphasized. We systematically analyze how our coarse-graining scheme resolves dimensionless hydrodynamic numbers such as the Reynolds number Re, which indicates the importance of inertial effects, the Schmidt number Sc, which indicates whether momentum transport is liquidlike or gaslike, the Mach number, which measures compressibility effects, the Knudsen number, which describes the importance of noncontinuum molecular effects, and the Peclet number, which describes the relative effects of convective and diffusive transport. With these dimensionless numbers in the correct regime the many Brownian and hydrodynamic time scales can be telescoped together to maximize computational efficiency while still correctly resolving the physically relevant processes. We also show how to control a number of numerical artifacts, such as finite-size effects and solvent-induced attractive depletion interactions. When all these considerations are properly taken into account, the measured colloidal velocity autocorrelation functions and related self-diffusion and friction coefficients compare quantitatively with theoretical calculations. By contrast, these calculations demonstrate that, notwithstanding its seductive simplicity, the basic Langevin equation does a remarkably poor job of capturing the decay rate of the velocity autocorrelation function in the colloidal regime, strongly underestimating it at short times and strongly overestimating it at long times. Finally, we discuss in detail how to map the parameters of our method onto physical systems and from this extract more general lessons—keeping in mind that there is no such thing as a free lunch—that may be relevant for other coarse-graining schemes such as lattice Boltzmann or dissipative particle dynamics.

AB - We describe in detail how to implement a coarse-grained hybrid molecular dynamics and stochastic rotation dynamics simulation technique that captures the combined effects of Brownian and hydrodynamic forces in colloidal suspensions. The importance of carefully tuning the simulation parameters to correctly resolve the multiple time and length scales of this problem is emphasized. We systematically analyze how our coarse-graining scheme resolves dimensionless hydrodynamic numbers such as the Reynolds number Re, which indicates the importance of inertial effects, the Schmidt number Sc, which indicates whether momentum transport is liquidlike or gaslike, the Mach number, which measures compressibility effects, the Knudsen number, which describes the importance of noncontinuum molecular effects, and the Peclet number, which describes the relative effects of convective and diffusive transport. With these dimensionless numbers in the correct regime the many Brownian and hydrodynamic time scales can be telescoped together to maximize computational efficiency while still correctly resolving the physically relevant processes. We also show how to control a number of numerical artifacts, such as finite-size effects and solvent-induced attractive depletion interactions. When all these considerations are properly taken into account, the measured colloidal velocity autocorrelation functions and related self-diffusion and friction coefficients compare quantitatively with theoretical calculations. By contrast, these calculations demonstrate that, notwithstanding its seductive simplicity, the basic Langevin equation does a remarkably poor job of capturing the decay rate of the velocity autocorrelation function in the colloidal regime, strongly underestimating it at short times and strongly overestimating it at long times. Finally, we discuss in detail how to map the parameters of our method onto physical systems and from this extract more general lessons—keeping in mind that there is no such thing as a free lunch—that may be relevant for other coarse-graining schemes such as lattice Boltzmann or dissipative particle dynamics.

KW - IR-59076

KW - METIS-234341

U2 - 10.1103/PhysRevE.74.031402

DO - 10.1103/PhysRevE.74.031402

M3 - Article

VL - 74

JO - Physical review E: covering statistical, nonlinear, biological, and soft matter physics

JF - Physical review E: covering statistical, nonlinear, biological, and soft matter physics

SN - 2470-0045

IS - 3

M1 - 031402

ER -