### Abstract

We apply a hybrid molecular dynamics and mesoscopic simulation technique to study the dynamics of two-dimensional colloidal disks in confined geometries. We calculate the velocity autocorrelation functions and observe the predicted t−1 long-time hydrodynamic tail that characterizes unconfined fluids, as well as more complex oscillating behavior and negative tails for strongly confined geometries. Because the t−1 tail of the velocity autocorrelation function is cut off for longer times in finite systems, the related diffusion coefficient does not diverge but instead depends logarithmically on the overall size of the system. The Langevin equation gives a poor approximation to the velocity autocorrelation function at both short and long times.

Original language | English |
---|---|

Article number | 051402 |

Number of pages | 10 |

Journal | Physical review E: Statistical physics, plasmas, fluids, and related interdisciplinary topics |

Volume | 79 |

Issue number | 5 |

DOIs | |

Publication status | Published - 2009 |

### Keywords

- METIS-257731
- IR-73727

## Fingerprint Dive into the research topics of 'Hydrodynamics of confined colloidal fluids in two dimensions'. Together they form a unique fingerprint.

## Cite this

Sane, J., Padding, J. T., & Louis, A. A. (2009). Hydrodynamics of confined colloidal fluids in two dimensions.

*Physical review E: Statistical physics, plasmas, fluids, and related interdisciplinary topics*,*79*(5), [051402]. https://doi.org/10.1103/PhysRevE.79.051402