TY - JOUR
T1 - Hydrophobic deep eutectic solvents for the recovery of bio-based chemicals
T2 - Solid–liquid equilibria and liquid–liquid extraction
AU - Brouwer, Thomas
AU - Dielis, Bas C.
AU - Bock, Jorrit M.
AU - Schuur, Boelo
PY - 2021/4/30
Y1 - 2021/4/30
N2 - The solid–liquid equilibrium (SLE) behavior and liquid–liquid extraction (LLX) abilities of deep eutectic solvents (DESs) containing (a) thymol and L-menthol, and (b) trioctylphosphine oxide (TOPO) and L-menthol were evaluated. The distribution coefficients (KD) were determined for the solutes relevant for two biorefinery cases, including formic acid, levulinic acid, furfural, acetic acid, propionic acid, butyric acid, and L-lactic acid. Overall, for both cases, an increasing KD was observed for both DESs for acids increasing in size and thus hydrophobicity. Furfural, being the most hydrophobic, was seen to extract the highest KD (for DES (a) 14.2 ± 2.2 and (b) 4.1 ± 0.3), and the KD of lactic acid was small, independent of the DESs (DES (a) 0.5 ± 0.07 and DES (b) 0.4 ± 0.05). The KD of the acids for the TOPO and L-menthol DES were in similar ranges as for traditional TOPOcontaining composite solvents, while for the thymol/L-menthol DES, in the absence of the Lewis base functionality, a smaller KD was observed. The selectivity of formic acid and levulinic acid separation was different for the two DESs investigated because of the acid–base interaction of the phosphine group. The thymol and L-menthol DES was selective towards levulinic acid (Sij = 9.3 +/− 0.10, and the TOPO and L-menthol DES was selective towards FA (Sij = 2.1 +/− 0.28).
AB - The solid–liquid equilibrium (SLE) behavior and liquid–liquid extraction (LLX) abilities of deep eutectic solvents (DESs) containing (a) thymol and L-menthol, and (b) trioctylphosphine oxide (TOPO) and L-menthol were evaluated. The distribution coefficients (KD) were determined for the solutes relevant for two biorefinery cases, including formic acid, levulinic acid, furfural, acetic acid, propionic acid, butyric acid, and L-lactic acid. Overall, for both cases, an increasing KD was observed for both DESs for acids increasing in size and thus hydrophobicity. Furfural, being the most hydrophobic, was seen to extract the highest KD (for DES (a) 14.2 ± 2.2 and (b) 4.1 ± 0.3), and the KD of lactic acid was small, independent of the DESs (DES (a) 0.5 ± 0.07 and DES (b) 0.4 ± 0.05). The KD of the acids for the TOPO and L-menthol DES were in similar ranges as for traditional TOPOcontaining composite solvents, while for the thymol/L-menthol DES, in the absence of the Lewis base functionality, a smaller KD was observed. The selectivity of formic acid and levulinic acid separation was different for the two DESs investigated because of the acid–base interaction of the phosphine group. The thymol and L-menthol DES was selective towards levulinic acid (Sij = 9.3 +/− 0.10, and the TOPO and L-menthol DES was selective towards FA (Sij = 2.1 +/− 0.28).
KW - Bio-refinery
KW - Carboxylic acids
KW - Deep eutectic solvent
KW - Furfural
KW - L-menthol
KW - deep eutectic solvent
KW - furfural
KW - carboxylic acids
KW - bio-refinery
UR - http://www.scopus.com/inward/record.url?scp=85106649513&partnerID=8YFLogxK
U2 - 10.3390/pr9050796
DO - 10.3390/pr9050796
M3 - Article
AN - SCOPUS:85106649513
SN - 2227-9717
VL - 9
JO - Processes
JF - Processes
IS - 5
M1 - 796
ER -