TY - JOUR
T1 - Hypoxia Inhibits Hypertrophic Differentiation and Endochondral Ossification in Explanted Tibiae
AU - Leijten, Jeroen Christianus Hermanus
AU - Moreira Teixeira, Liliana
AU - Landman, Ellie
AU - van Blitterswijk, Clemens
AU - Karperien, Hermanus Bernardus Johannes
PY - 2012
Y1 - 2012
N2 - Purpose: Hypertrophic differentiation of growth plate chondrocytes induces angiogenesis which alleviates hypoxia normally present in cartilage. In the current study, we aim to determine whether alleviation of hypoxia is merely
a downstream effect of hypertrophic differentiation as previously described or whether alleviation of hypoxia and consequent changes in oxygen tension mediated signaling events also plays an active role in regulating the hypertrophic differentiation process itself. Materials and Methods: Fetal mouse tibiae (E17.5) explants were cultured up to 21 days under normoxic or hypoxic
conditions (21% and 2.5% oxygen respectively). Tibiae were analyzed on growth kinetics, histology, gene expression and protein secretion. Results: The oxygen level had a strong influence on the development of explanted fetal tibiae. Compared to hypoxia, normoxia increased the length of the tibiae, length of the hypertrophic zone, calcification of the cartilage and mRNA levels of hypertrophic differentiation-related genes e.g. MMP9, MMP13, RUNX2, COL10A1 and ALPL. Compared to normoxia, hypoxia increased the size of the cartilaginous epiphysis, length of the resting zone, calcification of the bone and mRNA levels of hyaline cartilage-related genes e.g. ACAN, COL2A1 and SOX9. additionally, hypoxia enhanced the mRNA and protein expression of the secreted articular cartilage markers GREM1, FRZB and DKK1, which are able to inhibit hypertrophic differentiation. Conclusions: Collectively our data suggests that oxygen levels play an active role in the regulation of hypertrophic
differentiation of hyaline chondrocytes. Normoxia stimulates hypertrophic differentiation evidenced by the expression of hypertrophic differentiation related genes. In contrast, hypoxia suppresses hypertrophic differentiation of chondrocytes, which might be at least partially explained by the induction of GREM1, FRZB and DKK1 expression
AB - Purpose: Hypertrophic differentiation of growth plate chondrocytes induces angiogenesis which alleviates hypoxia normally present in cartilage. In the current study, we aim to determine whether alleviation of hypoxia is merely
a downstream effect of hypertrophic differentiation as previously described or whether alleviation of hypoxia and consequent changes in oxygen tension mediated signaling events also plays an active role in regulating the hypertrophic differentiation process itself. Materials and Methods: Fetal mouse tibiae (E17.5) explants were cultured up to 21 days under normoxic or hypoxic
conditions (21% and 2.5% oxygen respectively). Tibiae were analyzed on growth kinetics, histology, gene expression and protein secretion. Results: The oxygen level had a strong influence on the development of explanted fetal tibiae. Compared to hypoxia, normoxia increased the length of the tibiae, length of the hypertrophic zone, calcification of the cartilage and mRNA levels of hypertrophic differentiation-related genes e.g. MMP9, MMP13, RUNX2, COL10A1 and ALPL. Compared to normoxia, hypoxia increased the size of the cartilaginous epiphysis, length of the resting zone, calcification of the bone and mRNA levels of hyaline cartilage-related genes e.g. ACAN, COL2A1 and SOX9. additionally, hypoxia enhanced the mRNA and protein expression of the secreted articular cartilage markers GREM1, FRZB and DKK1, which are able to inhibit hypertrophic differentiation. Conclusions: Collectively our data suggests that oxygen levels play an active role in the regulation of hypertrophic
differentiation of hyaline chondrocytes. Normoxia stimulates hypertrophic differentiation evidenced by the expression of hypertrophic differentiation related genes. In contrast, hypoxia suppresses hypertrophic differentiation of chondrocytes, which might be at least partially explained by the induction of GREM1, FRZB and DKK1 expression
KW - IR-82209
KW - METIS-289814
U2 - 10.1371/journal.pone.0049896
DO - 10.1371/journal.pone.0049896
M3 - Article
SN - 1932-6203
VL - 7
SP - 1
EP - 7
JO - PLoS ONE
JF - PLoS ONE
IS - 11
M1 - e49896
ER -