TY - JOUR
T1 - Ice melting in salty water
T2 - Layering and non-monotonic dependence on the mean salinity
AU - Yang, Rui
AU - Howland, Christopher J.
AU - Liu, Hao-Ran
AU - Verzicco, Roberto
AU - Lohse, Detlef
N1 - Funding Information:
We acknowledge PRACE for awarding us access to MareNostrum in Spain at the Barcelona Computing Center (BSC) under the projects 2020235589 and 2021250115, as well as the Netherlands Center for Multiscale Catalytic Energy Conversion (MCEC). We also acknowledge support from the Deutsche Forschungsgemeinschaft Priority Programme SPP 1881, 'Turbulent Superstructures'. This research was supported in part by the National Science Foundation under grant no. NSF PHY-1748958.
Funding Information:
We acknowledge PRACE for awarding us access to MareNostrum in Spain at the Barcelona Computing Center (BSC) under the projects 2020235589 and 2021250115, as well as the Netherlands Center for Multiscale Catalytic Energy Conversion (MCEC). We also acknowledge support from the Deutsche Forschungsgemeinschaft Priority Programme SPP 1881, ‘Turbulent Superstructures’. This research was supported in part by the National Science Foundation under grant no. NSF PHY-1748958.
Publisher Copyright:
© 2023 The Author(s).
PY - 2023/8/25
Y1 - 2023/8/25
N2 - The presence of salt in seawater strongly affects the melt rate and the shape evolution of ice, both of utmost relevance in ice–ocean interactions and thus for the climate. To get a better quantitative understanding of the physical mechanics at play in ice melting in salty water, we numerically investigate the lateral melting of an ice block in stably stratified saline water. The developing ice shape from our numerical results shows good agreement with the experiments and theory from Huppert & Turner (J. Fluid Mech., vol. 100, 1980, pp. 367–384). Furthermore, we find that the melt rate of ice depends non-monotonically on the mean ambient salinity: it first decreases for increasing salt concentration until a local minimum is attained, and then increases again. This non-monotonic behaviour of the ice melt rate is due to the competition among salinity-driven buoyancy, temperature-driven buoyancy and salinity-induced stratification. We develop a theoretical model based on the force balance which gives a prediction of the salt concentration for which the melt rate is minimal, and is consistent with our data. Our findings give insight into the interplay between phase transitions and double-diffusive convective flows.
AB - The presence of salt in seawater strongly affects the melt rate and the shape evolution of ice, both of utmost relevance in ice–ocean interactions and thus for the climate. To get a better quantitative understanding of the physical mechanics at play in ice melting in salty water, we numerically investigate the lateral melting of an ice block in stably stratified saline water. The developing ice shape from our numerical results shows good agreement with the experiments and theory from Huppert & Turner (J. Fluid Mech., vol. 100, 1980, pp. 367–384). Furthermore, we find that the melt rate of ice depends non-monotonically on the mean ambient salinity: it first decreases for increasing salt concentration until a local minimum is attained, and then increases again. This non-monotonic behaviour of the ice melt rate is due to the competition among salinity-driven buoyancy, temperature-driven buoyancy and salinity-induced stratification. We develop a theoretical model based on the force balance which gives a prediction of the salt concentration for which the melt rate is minimal, and is consistent with our data. Our findings give insight into the interplay between phase transitions and double-diffusive convective flows.
KW - UT-Hybrid-D
U2 - 10.1017/jfm.2023.582
DO - 10.1017/jfm.2023.582
M3 - Article
SN - 0022-1120
VL - 969
JO - Journal of fluid mechanics
JF - Journal of fluid mechanics
M1 - R2
ER -