Research output per year
Research output per year
Bodo Manthey, Jesse van Rhijn*
Research output: Chapter in Book/Report/Conference proceeding › Chapter › Academic › peer-review
The 2-opt heuristic is a simple local search heuristic for the Travelling Salesperson Problem (TSP). Although it usually performs well in practice, its worst-case running time is poor. Attempts to reconcile this difference have used smoothed analysis, in which adversarial instances are perturbed probabilistically. We are interested in the classical model of smoothed analysis for the Euclidean TSP, in which the perturbations are Gaussian. This model was previously used by Manthey & Veenstra, who obtained smoothed complexity bounds polynomial in n, the dimension d, and the perturbation strength σ−1. However, their analysis only works for d ≥ 4. The only previous analysis for d ≤ 3 was performed by Englert, Röglin & Vöcking, who used a different perturbation model which can be translated to Gaussian perturbations. Their model yields bounds polynomial in n and σ−d, and super-exponential in d. As the fact that no direct analysis exists for Gaussian perturbations that yields polynomial bounds for all d is somewhat unsatisfactory, we perform this missing analysis. Along the way, we improve all existing smoothed complexity bounds for Euclidean 2-opt with Gaussian perturbations.
Original language | English |
---|---|
Title of host publication | 34th International Symposium on Algorithms and Computation (ISAAC 2023) |
Editors | Satoru Iwata, Satoru Iwata, Naonori Kakimura |
Publisher | Dagstuhl |
Number of pages | 16 |
ISBN (Electronic) | 978-3-95977-289-1 |
DOIs | |
Publication status | Published - 28 Nov 2023 |
Event | 34th International Symposium on Algorithms and Computation, ISAAC 2023 - Kyoto, Japan Duration: 3 Dec 2023 → 6 Dec 2023 Conference number: 34 |
Name | Leibniz International Proceedings in Informatics, LIPIcs |
---|---|
Volume | 283 |
ISSN (Print) | 1868-8969 |
Conference | 34th International Symposium on Algorithms and Computation, ISAAC 2023 |
---|---|
Abbreviated title | ISAAC 2023 |
Country/Territory | Japan |
City | Kyoto |
Period | 3/12/23 → 6/12/23 |
Research output: Working paper › Preprint › Academic