In-depth analysis of potential-induced degradation in a commercial CIGS PV module

Pelin Yilmaz*, Jessica de Wild, Rémi Aninat, Thomas Weber, Bart Vermang, Jurriaan Schmitz, Mirjam Theelen

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

4 Citations (Scopus)
86 Downloads (Pure)

Abstract

A post-mortem analysis is conducted after potential-induced degradation (PID) of a commercial copper-indium-gallium-selenide (CIGS) photovoltaic module. After PID, the conversion efficiency of the total module decreased by 62%. Electroluminescence images of the module show that the edges of the modules were much more affected by the PID than the middle part of the module. Coring samples were prepared of the different areas and chemical compositional information of the various areas was combined with electrical characterisation, cell modelling and luminescence data to obtain an overall perspective on the root cause of degradation in these modules during high voltage stress. Consistent with earlier studies on cell level, the module analysis shows the occurrence of alkali migration. From current–voltage modelling, it was concluded that the degradation of the most affected areas is due to an increase in bulk and CdS/CIGS interface defects, likely induced by ion migration. Further degradation on the same samples occurred when they are taken out of the argon-filled glovebox and stored under ambient conditions. Remarkably, the PID-degraded areas show stronger degradation when left in ambient atmosphere, as well as a stronger Na redistribution. These new results show that ion migration not only causes the immediate degradation but also strongly affects the longer-term stability of the cells in ambient atmosphere. This indicates that PID degradation makes CIGS devices more vulnerable to hermeticity problems, which are most prominent at the module edges.

Original languageEnglish
Number of pages10
JournalProgress in Photovoltaics: Research and Applications
Volume31
Issue number6
Early online date17 Feb 2023
DOIs
Publication statusPublished - Jun 2023

Keywords

  • CIGS PV
  • coring
  • post-mortem analysis
  • potential-induced degradation
  • UT-Hybrid-D

Fingerprint

Dive into the research topics of 'In-depth analysis of potential-induced degradation in a commercial CIGS PV module'. Together they form a unique fingerprint.

Cite this