In depth study of molybdenum silicon compound formation at buried interfaces

E. Zoethout, Eric Louis, Frederik Bijkerk

Research output: Contribution to journalArticleAcademicpeer-review

10 Citations (Scopus)
69 Downloads (Pure)

Abstract

Angle resolved x-ray photoelectron spectroscopy (ARXPS) has been employed to determine non-destructively the in-depth interface formation during thin film growth. Buried interfaces underneath the nanometer thick layers are probed by identifying the chemical shift of compound materials in photoelectron spectroscopy and using the angular response to quantify the compound amounts from the measured intensities. The thin interfaces in molybdenum-silicon multilayers grown at ambient temperature are investigated. This system is an example of an almost perfect 1D-system, where the interface region is only a small part of the individual layer thicknesses of 3 to 5 nm. Despite the low growth temperature, both the interfaces of this multilayer show layer thickness dependent interface formation. While the silicon-on-molybdenum interface shows a limited interface thickness of 0.4 nm of Mo 5Si3, the molybdenum-on-silicon interface shows a more complex evolution. For this interface, the composition of the first 2.0 nm of deposited layer thickness is best described as a molybdenum-silicon compound layer with a molybdenum rich top and a MoSi2 bottom layer. After 2.5 nm of the deposited layer thickness, the molybdenum rich compound at the top has transformed into polycrystalline molybdenum on top of 1.8 nm MoSi2 at the interface. The formation of the 1.8 nm MoSi2 precedes the formation of polycrystalline molybdenum on top. Angle resolved x-ray photoelectron spectroscopy (ARXPS) is shown to be a good tool to study the interface phenomena beneath the nanometer thick top layers. In the case of Mo/Si multilayer mirrors, this ARXPS study shows that the compound formation at the interface accounts for the majority of the extreme ultraviolet reflectance loss.
Original languageEnglish
Article number115303
Pages (from-to)-
Number of pages9
JournalJournal of Applied Physics
Volume120
Issue number11
DOIs
Publication statusPublished - 2016

Keywords

  • METIS-318643
  • IR-101946

Fingerprint Dive into the research topics of 'In depth study of molybdenum silicon compound formation at buried interfaces'. Together they form a unique fingerprint.

  • Cite this