Abstract
Atomic hydrogen based etching is generally considered an efficient method for the removal of carbon films resulting from photo-induced hydrocarbon dissociation, as occurs in extreme ultraviolet (EUV) photolithography environments. The etch rate of atomic hydrogen for three different kinds of carbon films was determined, namely for EUV-induced carbon, hot filament evaporated carbon and e-beam evaporated carbon. The etching process was monitored in situ by spectroscopic ellipsometry. The etch rate was found to depend on the type of carbon (polymer or graphite-like), on the layer thickness, and on the temperature. The EUV-induced carbon shows the highest etch rate, with a value of ∼0.2 nm/min at a sample temperature of 60 °C. The more graphite-like carbon layers showed an etch rate that was about 10 times lower at this temperature. An activation energy of 0.45 eV was found for etching of the EUV-induced carbon layer
Original language | English |
---|---|
Pages (from-to) | 7-12 |
Number of pages | 6 |
Journal | Applied surface science |
Volume | 258 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2011 |
Keywords
- IR-104470
- METIS-277876