TY - JOUR
T1 - In Situ X-ray Absorption Spectroscopy of LaFeO3 and LaFeO3/LaNiO3 Thin Films in the Electrocatalytic Oxygen Evolution Reaction
AU - Che, Qijun
AU - van den Bosch, Iris C.G.
AU - Le, Phu T.P.
AU - Lazemi, Masoud
AU - van der Minne, Emma
AU - Birkhölzer, Yorick A.
AU - Nunnenkamp, Moritz
AU - Peerlings, Matt L.J.
AU - Safonova, Olga V.
AU - Nachtegaal, Maarten
AU - Koster, Gertjan
AU - Baeumer, Christoph
AU - de Jongh, Petra
AU - de Groot, Frank M.F.
N1 - Publisher Copyright:
© 2024 The Authors. Published by American Chemical Society.
PY - 2024/4/4
Y1 - 2024/4/4
N2 - We study the electrocatalytic oxygen evolution reaction using in situ X-ray absorption spectroscopy (XAS) to track the dynamics of the valence state and the covalence of the metal ions of LaFeO3 and LaFeO3/LaNiO3 thin films. The active materials are 8 unit cells grown epitaxially on 100 nm conductive La0.67Sr0.33MnO3 layers using pulsed laser deposition (PLD). The perovskite layers are supported on monolayer Ca2Nb3O10 nanosheet-buffered 100 nm SiNx membranes. The in situ Fe and Ni K-edges XAS spectra were measured from the backside of the SiNx membrane using fluorescence yield detection under electrocatalytic reaction conditions. The XAS spectra show significant spectral changes, which indicate that (1) the metal (co)valencies increase, and (2) the number of 3d electrons remains constant with applied potential. We find that the whole 8 unit cells react to the potential changes, including the buried LaNiO3 film.
AB - We study the electrocatalytic oxygen evolution reaction using in situ X-ray absorption spectroscopy (XAS) to track the dynamics of the valence state and the covalence of the metal ions of LaFeO3 and LaFeO3/LaNiO3 thin films. The active materials are 8 unit cells grown epitaxially on 100 nm conductive La0.67Sr0.33MnO3 layers using pulsed laser deposition (PLD). The perovskite layers are supported on monolayer Ca2Nb3O10 nanosheet-buffered 100 nm SiNx membranes. The in situ Fe and Ni K-edges XAS spectra were measured from the backside of the SiNx membrane using fluorescence yield detection under electrocatalytic reaction conditions. The XAS spectra show significant spectral changes, which indicate that (1) the metal (co)valencies increase, and (2) the number of 3d electrons remains constant with applied potential. We find that the whole 8 unit cells react to the potential changes, including the buried LaNiO3 film.
UR - http://www.scopus.com/inward/record.url?scp=85188424819&partnerID=8YFLogxK
U2 - 10.1021/acs.jpcc.3c07864
DO - 10.1021/acs.jpcc.3c07864
M3 - Article
AN - SCOPUS:85188424819
SN - 1932-7447
VL - 128
SP - 5515
EP - 5523
JO - Journal of Physical Chemistry C
JF - Journal of Physical Chemistry C
IS - 13
ER -