Abstract
Three-armed poly(trimethylene carbonate) (PTMC) and poly(trimethylene carbonate-co-Ɛ-caprolactone) (P(TMC-co-ε-CL)) macromers with molecular weights of approximately 30 kg mol−1 are synthesized by ring-opening polymerization and subsequent functionalization with methacrylic anhydride. Networks are then prepared by photo-crosslinking. To investigate the in vitro and in vivo degradation properties of these photo-crosslinked networks and assess the effect of ε-caprolactone content on the degradation properties, PTMC networks, and copolymer networks with two different TMC:ε-CL ratios are prepared. PTMC networks degraded slowly, via an enzymatic surface erosion process, both in vitro and in vivo. Networks prepared from P(TMC-co-ε-CL) macromers with a 74:26 ratio are found to degrade slowly as well, via a surface erosion process, albeit at a higher rate compared to PTMC networks. Increasing the ε-CL content to a ratio of 52:48, resulted in a faster degradation. These networks lost their mechanical properties much sooner than the other networks. Thus, PTMC and P(TMC-co-ε-CL) networks are interesting networks for tissue engineering purposes and the exact degradation properties can be tuned by varying the TMC:ε-CL ratio, providing researchers with a tool to obtain copolymer networks with the desired degradation rate depending on the intended application.
Original language | English |
---|---|
Article number | 2300364 |
Journal | Macromolecular bioscience |
Volume | 24 |
Issue number | 3 |
Early online date | 3 Nov 2023 |
DOIs | |
Publication status | Published - Mar 2024 |
Keywords
- UT-Hybrid-D