In vivo evaluation of highly macroporous ceramic scaffolds for bone tissue engineering

S. Teixeira, H. Fernandes, A. Leusink, Clemens van Blitterswijk, M.P. Ferraz, F.J. Monteiro, Jan de Boer

Research output: Contribution to journalArticleAcademic

48 Citations (Scopus)

Abstract

During the last decades, different materials of both natural and synthetic origin have been developed with the aim of inducing and controlling osteogenic differentiation of mesenchymal stem cells (MSCs). In order for that to happen, it is necessary that the material to be implanted obey a series of requirements, namely: osteoconduction, biocompatibility, and biodegradability. Additionally, they must be low-priced, easy to produce, shape, and store. Hydroxyapatite (HA) is a well known ceramic with a composition similar to the mineral component of bone and is highly biocompatible and easy to obtain and/or process. On the other hand, collagen is the main structural protein present in the human body and bone. In this study, a polymer replication method was applied and a highly porous HA scaffold was produced. Collagen was later incorporated to improve the biological properties of the scaffold while resembling the bone composition. The scaffolds were characterized by means of scanning electron microscopy, Fourier transform infrared spectroscopy and energy dispersive spectroscopy. In vitro and in vivo testing was performed in all scaffolds produced. The goal of this study was to evaluate the in vivo osteogenic potential of MSCs from two different species seeded on the different HA basedporous scaffolds with collagen type I. The resultsindicate that all scaffolds exhibit relevant bone formation, being more prominent in the case of the HA scaffolds.
Original languageUndefined
Pages (from-to)567-575
JournalJournal of biomedical materials research. Part A
Volume93
Issue number2
DOIs
Publication statusPublished - 2010

Keywords

  • Collagen
  • calcium phosphates
  • Tissue Engineering
  • in vivo bone formation
  • Macroporous scaffolds
  • IR-72759

Cite this

Teixeira, S., Fernandes, H., Leusink, A., van Blitterswijk, C., Ferraz, M. P., Monteiro, F. J., & de Boer, J. (2010). In vivo evaluation of highly macroporous ceramic scaffolds for bone tissue engineering. Journal of biomedical materials research. Part A, 93(2), 567-575. https://doi.org/10.1002/jbm.a.32532