TY - JOUR
T1 - Inactive Wnt/β-catenin pathway in conventional high-grade osteosarcoma
AU - Cai, Yongping
AU - Mohseny, Alexander B.
AU - Karperien, Hermanus Bernardus Johannes
AU - Hogendoorn, Pancras C.W.
AU - Zhou, Gengyin
AU - Cleton-Jansen, Anne-Marie
PY - 2010
Y1 - 2010
N2 - Osteosarcoma is the most common malignant bone tumour, with a peak incidence in children and young adolescents, suggesting a role of rapid bone growth in its pathogenesis. The Wnt/β-catenin pathway plays a crucial role in skeletal development and is indispensable for osteoblasts' lineage determination. Previous studies suggesting an oncogenic role for the Wnt/β-catenin pathway in osteosarcoma were based on cytoplasmic staining of β-catenin or the detection of one component of this pathway. However, those approaches are inappropriate to address whether the Wnt/β-catenin pathway is functionally active. Therefore, in this study, we examined nuclear β-catenin expression in 52 human osteosarcoma biopsies, 15 osteoblastomas (benign bone tumours), and four human osteosarcoma cell lines by immunohistochemistry. Furthermore, we modulated Wnt/β-catenin pathway activity using a GIN (GSK3β inhibitor) and evaluated its effect on cell growth and osteogenic differentiation. Absence of nuclear β-catenin staining was found in 90% of the biopsies and all osteosarcoma cell lines, whereas strong nuclear β-catenin staining was observed in all osteoblastomas. Wnt-luciferase activity was comparable to the negative control in all osteosarcoma cell lines. GIN stimulated the Wnt/β-catenin pathway, as shown by translocation of β-catenin into the nucleus and increased Wnt-luciferase activity as well as mRNA expression of AXIN2, a specific downstream target gene. Stimulation of the Wnt/β-catenin pathway by GIN significantly reduced cell proliferation in the cell lines MG-63 and U-2-OS and enhanced differentiation in the cell lines HOS and SJSA-1, as shown by an increase in alkaline phosphatase (ALP) activity and mineralization. In contrast with the oncogenic role of the Wnt/β-catenin pathway in osteosarcoma as previous studies suggested, here we demonstrate that this pathway is inactivated in osteosarcoma. Moreover, activation of the Wnt/β-catenin pathway inhibits cell proliferation or promotes osteogenic differentiation in osteosarcoma cell lines. Our data suggest that loss of Wnt/β-catenin pathway activity, which is required for osteoblast differentiation, may contribute to osteosarcoma development.
AB - Osteosarcoma is the most common malignant bone tumour, with a peak incidence in children and young adolescents, suggesting a role of rapid bone growth in its pathogenesis. The Wnt/β-catenin pathway plays a crucial role in skeletal development and is indispensable for osteoblasts' lineage determination. Previous studies suggesting an oncogenic role for the Wnt/β-catenin pathway in osteosarcoma were based on cytoplasmic staining of β-catenin or the detection of one component of this pathway. However, those approaches are inappropriate to address whether the Wnt/β-catenin pathway is functionally active. Therefore, in this study, we examined nuclear β-catenin expression in 52 human osteosarcoma biopsies, 15 osteoblastomas (benign bone tumours), and four human osteosarcoma cell lines by immunohistochemistry. Furthermore, we modulated Wnt/β-catenin pathway activity using a GIN (GSK3β inhibitor) and evaluated its effect on cell growth and osteogenic differentiation. Absence of nuclear β-catenin staining was found in 90% of the biopsies and all osteosarcoma cell lines, whereas strong nuclear β-catenin staining was observed in all osteoblastomas. Wnt-luciferase activity was comparable to the negative control in all osteosarcoma cell lines. GIN stimulated the Wnt/β-catenin pathway, as shown by translocation of β-catenin into the nucleus and increased Wnt-luciferase activity as well as mRNA expression of AXIN2, a specific downstream target gene. Stimulation of the Wnt/β-catenin pathway by GIN significantly reduced cell proliferation in the cell lines MG-63 and U-2-OS and enhanced differentiation in the cell lines HOS and SJSA-1, as shown by an increase in alkaline phosphatase (ALP) activity and mineralization. In contrast with the oncogenic role of the Wnt/β-catenin pathway in osteosarcoma as previous studies suggested, here we demonstrate that this pathway is inactivated in osteosarcoma. Moreover, activation of the Wnt/β-catenin pathway inhibits cell proliferation or promotes osteogenic differentiation in osteosarcoma cell lines. Our data suggest that loss of Wnt/β-catenin pathway activity, which is required for osteoblast differentiation, may contribute to osteosarcoma development.
KW - luci- ferase reporter assay
KW - β-catenin
KW - IR-72777
KW - Bone tumours
KW - DKK1
KW - GSK3β
KW - Wnt
KW - osteosarcoma
KW - osteoblastoma
KW - immunohistochemistry
U2 - 10.1002/path.2628
DO - 10.1002/path.2628
M3 - Article
SN - 0022-3417
VL - 220
SP - 24
EP - 33
JO - Journal of pathology
JF - Journal of pathology
IS - 1
ER -