Influence of liquid layers on energy absorption during particle impact

Sergiy Antonyuk, Stefan Heinrich, N.G. Deen, J.A.M. Kuipers

    Research output: Contribution to journalArticleAcademic

    104 Citations (Scopus)
    19 Downloads (Pure)


    The influence of the thickness of a covering liquid layer and its viscosity as well as the impact velocity on energy loss during the normal impact on a flat steel wall of spherical granules with a liquid layer was studied. Free-fall experiments were performed to obtain the restitution coefficient of elastic–plastic γ-Al2O3 granules by impact on the liquid layer, using aqueous solutions of hydroxypropyl methylcellulose with different concentrations for variation of viscosity (1–300 mPa s). In the presence of a liquid layer, increase of liquid viscosity decreases the restitution coefficient and the minimum thickness of the liquid layer at which the granule sticks to the wall. The measured restitution coefficients were compared with experiments performed without liquid layer. In contrast to the dry restitution coefficient, due to viscous losses at lower impact velocity, higher energy dissipation was obtained. A rational explanation for the effects obtained was given by results of numerically solved force and energy balances for a granule impact on a liquid layer on the wall. The model takes into account forces acting on the granule including viscous, surface tension, capillary, contact, drag, buoyancy and gravitational forces. Good agreement between simulations and experiments has been achieved.
    Original languageUndefined
    Pages (from-to)245-259
    Issue number4
    Publication statusPublished - 2009


    • IR-67349

    Cite this