Infraslow activity as a potential modulator of corticomotor excitability

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

Fluctuations in cortical excitability are a candidate mechanism involved in the trial-to-trial variation of motor evoked potentials (MEPs) to transcranial magnetic stimulation (TMS). We explore whether infraslow EEG activity (<0.1 Hz) modulates corticomotor excitability by evaluating the presence of temporal and phase clustering of TMS-induced MEPs. In addition, we evaluate the dependence of MEP amplitude on the phase of the infraslow activity. Twenty-three subjects were stimulated at an intensity above the resting motor threshold (rMT) and ten at the rMT. We evaluated whether temporal and phase clustering of MEP size and MEP generation were present, using 1,000 surrogates with a similar amplitude or occurrence distribution. To evaluate the MEP amplitude dependence, we used the least-square method to approximate the linear circular data by fitting a sine function. We observed significant temporal clustering at a group level, in all individual subjects stimulated at rMT and in the majority of those stimulated above rMT, suggesting underlying determinism of corticomotor excitability instead of randomly generated fluctuations. The majority of subjects showed significant phase clustering for MEP size and for MEP occurrence, and significant phase clustering was found at the group level. Furthermore, in approximately one-quarter to one-half of the subjects we found a significant correlation and dependence of MEP amplitude on the phase of infraslow activity, respectively. Although other mechanisms very likely contribute as well, our findings seem to suggest that infraslow activity is involved in the variability of cortical excitability and TMS-induced responses. NEW & NOTEWORTHY Cortical excitability measures are highly variable during transcranial magnetic stimulation. Although ongoing brain oscillations are assumed to modulate excitability, no consistent associations are found for the traditional frequency bands. We focus on the role of infraslow EEG activity, defined as rhythms with frequencies < 0.1 Hz. We provide experimental evidence suggesting that infraslow activity most likely modulates corticomotor excitability and that response variation could be reduced when stimulation is targeted at a specific infraslow phase.

Original languageEnglish
Pages (from-to)325-335
Number of pages11
JournalJournal of neurophysiology
Volume122
Issue number1
DOIs
Publication statusPublished - 1 Jul 2019

Fingerprint

Motor Evoked Potentials
Transcranial Magnetic Stimulation
Cluster Analysis
Electroencephalography
Least-Squares Analysis

Keywords

  • cortical excitability
  • infraslow activity
  • motor evoked potential
  • phase dependence
  • transcranial magnetic stimulation

Cite this

@article{8c34abcdab3841d2ab7e3f5e161cedb2,
title = "Infraslow activity as a potential modulator of corticomotor excitability",
abstract = "Fluctuations in cortical excitability are a candidate mechanism involved in the trial-to-trial variation of motor evoked potentials (MEPs) to transcranial magnetic stimulation (TMS). We explore whether infraslow EEG activity (<0.1 Hz) modulates corticomotor excitability by evaluating the presence of temporal and phase clustering of TMS-induced MEPs. In addition, we evaluate the dependence of MEP amplitude on the phase of the infraslow activity. Twenty-three subjects were stimulated at an intensity above the resting motor threshold (rMT) and ten at the rMT. We evaluated whether temporal and phase clustering of MEP size and MEP generation were present, using 1,000 surrogates with a similar amplitude or occurrence distribution. To evaluate the MEP amplitude dependence, we used the least-square method to approximate the linear circular data by fitting a sine function. We observed significant temporal clustering at a group level, in all individual subjects stimulated at rMT and in the majority of those stimulated above rMT, suggesting underlying determinism of corticomotor excitability instead of randomly generated fluctuations. The majority of subjects showed significant phase clustering for MEP size and for MEP occurrence, and significant phase clustering was found at the group level. Furthermore, in approximately one-quarter to one-half of the subjects we found a significant correlation and dependence of MEP amplitude on the phase of infraslow activity, respectively. Although other mechanisms very likely contribute as well, our findings seem to suggest that infraslow activity is involved in the variability of cortical excitability and TMS-induced responses. NEW & NOTEWORTHY Cortical excitability measures are highly variable during transcranial magnetic stimulation. Although ongoing brain oscillations are assumed to modulate excitability, no consistent associations are found for the traditional frequency bands. We focus on the role of infraslow EEG activity, defined as rhythms with frequencies < 0.1 Hz. We provide experimental evidence suggesting that infraslow activity most likely modulates corticomotor excitability and that response variation could be reduced when stimulation is targeted at a specific infraslow phase.",
keywords = "cortical excitability, infraslow activity, motor evoked potential, phase dependence, transcranial magnetic stimulation",
author = "{de Goede}, {Annika A.} and {van Putten}, {Michel J.A.M.}",
year = "2019",
month = "7",
day = "1",
doi = "10.1152/jn.00663.2018",
language = "English",
volume = "122",
pages = "325--335",
journal = "Journal of neurophysiology",
issn = "0022-3077",
publisher = "American Physiological Society",
number = "1",

}

Infraslow activity as a potential modulator of corticomotor excitability. / de Goede, Annika A.; van Putten, Michel J.A.M.

In: Journal of neurophysiology, Vol. 122, No. 1, 01.07.2019, p. 325-335.

Research output: Contribution to journalArticleAcademicpeer-review

TY - JOUR

T1 - Infraslow activity as a potential modulator of corticomotor excitability

AU - de Goede, Annika A.

AU - van Putten, Michel J.A.M.

PY - 2019/7/1

Y1 - 2019/7/1

N2 - Fluctuations in cortical excitability are a candidate mechanism involved in the trial-to-trial variation of motor evoked potentials (MEPs) to transcranial magnetic stimulation (TMS). We explore whether infraslow EEG activity (<0.1 Hz) modulates corticomotor excitability by evaluating the presence of temporal and phase clustering of TMS-induced MEPs. In addition, we evaluate the dependence of MEP amplitude on the phase of the infraslow activity. Twenty-three subjects were stimulated at an intensity above the resting motor threshold (rMT) and ten at the rMT. We evaluated whether temporal and phase clustering of MEP size and MEP generation were present, using 1,000 surrogates with a similar amplitude or occurrence distribution. To evaluate the MEP amplitude dependence, we used the least-square method to approximate the linear circular data by fitting a sine function. We observed significant temporal clustering at a group level, in all individual subjects stimulated at rMT and in the majority of those stimulated above rMT, suggesting underlying determinism of corticomotor excitability instead of randomly generated fluctuations. The majority of subjects showed significant phase clustering for MEP size and for MEP occurrence, and significant phase clustering was found at the group level. Furthermore, in approximately one-quarter to one-half of the subjects we found a significant correlation and dependence of MEP amplitude on the phase of infraslow activity, respectively. Although other mechanisms very likely contribute as well, our findings seem to suggest that infraslow activity is involved in the variability of cortical excitability and TMS-induced responses. NEW & NOTEWORTHY Cortical excitability measures are highly variable during transcranial magnetic stimulation. Although ongoing brain oscillations are assumed to modulate excitability, no consistent associations are found for the traditional frequency bands. We focus on the role of infraslow EEG activity, defined as rhythms with frequencies < 0.1 Hz. We provide experimental evidence suggesting that infraslow activity most likely modulates corticomotor excitability and that response variation could be reduced when stimulation is targeted at a specific infraslow phase.

AB - Fluctuations in cortical excitability are a candidate mechanism involved in the trial-to-trial variation of motor evoked potentials (MEPs) to transcranial magnetic stimulation (TMS). We explore whether infraslow EEG activity (<0.1 Hz) modulates corticomotor excitability by evaluating the presence of temporal and phase clustering of TMS-induced MEPs. In addition, we evaluate the dependence of MEP amplitude on the phase of the infraslow activity. Twenty-three subjects were stimulated at an intensity above the resting motor threshold (rMT) and ten at the rMT. We evaluated whether temporal and phase clustering of MEP size and MEP generation were present, using 1,000 surrogates with a similar amplitude or occurrence distribution. To evaluate the MEP amplitude dependence, we used the least-square method to approximate the linear circular data by fitting a sine function. We observed significant temporal clustering at a group level, in all individual subjects stimulated at rMT and in the majority of those stimulated above rMT, suggesting underlying determinism of corticomotor excitability instead of randomly generated fluctuations. The majority of subjects showed significant phase clustering for MEP size and for MEP occurrence, and significant phase clustering was found at the group level. Furthermore, in approximately one-quarter to one-half of the subjects we found a significant correlation and dependence of MEP amplitude on the phase of infraslow activity, respectively. Although other mechanisms very likely contribute as well, our findings seem to suggest that infraslow activity is involved in the variability of cortical excitability and TMS-induced responses. NEW & NOTEWORTHY Cortical excitability measures are highly variable during transcranial magnetic stimulation. Although ongoing brain oscillations are assumed to modulate excitability, no consistent associations are found for the traditional frequency bands. We focus on the role of infraslow EEG activity, defined as rhythms with frequencies < 0.1 Hz. We provide experimental evidence suggesting that infraslow activity most likely modulates corticomotor excitability and that response variation could be reduced when stimulation is targeted at a specific infraslow phase.

KW - cortical excitability

KW - infraslow activity

KW - motor evoked potential

KW - phase dependence

KW - transcranial magnetic stimulation

UR - http://www.scopus.com/inward/record.url?scp=85069799227&partnerID=8YFLogxK

U2 - 10.1152/jn.00663.2018

DO - 10.1152/jn.00663.2018

M3 - Article

VL - 122

SP - 325

EP - 335

JO - Journal of neurophysiology

JF - Journal of neurophysiology

SN - 0022-3077

IS - 1

ER -