Innovations in STEM education: the Go-Lab federation of online labs

Ton de Jong, Sofoklis Sotiriou, Dennis Gillet

    Research output: Contribution to journalArticleAcademicpeer-review

    41 Downloads (Pure)

    Abstract

    The Go-Lab federation of online labs opens up virtual laboratories (simulation), remote laboratories (real equipment accessible at distance) and data sets from physical laboratory experiments (together called “online labs”) for large-scale use in education. In this way, Go-Lab enables inquiry-based learning that promotes acquisition of deep conceptual domain knowledge and inquiry skills, with the further intent of interesting students in careers in science. For students, Go-Lab offers the opportunity to perform scientific experiments with online labs in pedagogically structured learning spaces. Go-Lab’s inquiry learning spaces (ILSs) structure the students’ inquiry process through an inquiry cycle and provide students with guidance in which dedicated (and connected) scaffolds for inquiry processes play a pivotal role. Teachers can create and adapt inquiry learning phases and the associated guidance in an ILS through a simple wiki-like interface and can add scaffolds and tools to an ILS using a straightforward drag and drop feature. Teachers can also adapt scaffolds and tools (e.g., change the language or the concepts available in a concept mapper) through an “app composer”. In creating ILSs, teachers are supported by scenarios and associated defaults ILSs that can be used as a starting point for development. In addition, teachers are offered a community framework to disseminate best practices and find mutual support. For lab-owners, Go-Lab provides open interfacing solutions for easily plugging in their online labs and sharing them in the Go-Lab federation of online labs. In its first year, Go-Lab created ILSs for thirteen online labs from different lab providers, including renowned research organizations (e.g., CERN, ESA) that participate in the consortium. The design of these inquiry learning spaces has been evaluated through mock-ups and prototypes with students and teachers. More advanced and later versions will be evaluated and validated in large scale pilots. The sustainability of Go-Lab will come from the opportunity for the larger science education community to add new online labs and share ILSs. An open and Web-based community will capitalize on the “collective intelligence” of students, teachers, and scientists
    Original languageUndefined
    Article number3
    Pages (from-to)3-
    JournalSmart learning environments
    Volume1
    Issue number1
    DOIs
    Publication statusPublished - 2014

    Keywords

    • METIS-310492
    • IR-95862

    Cite this

    de Jong, Ton ; Sotiriou, Sofoklis ; Gillet, Dennis. / Innovations in STEM education: the Go-Lab federation of online labs. In: Smart learning environments. 2014 ; Vol. 1, No. 1. pp. 3-.
    @article{b4c4ce0cf63749a6ac5d9646fdccaead,
    title = "Innovations in STEM education: the Go-Lab federation of online labs",
    abstract = "The Go-Lab federation of online labs opens up virtual laboratories (simulation), remote laboratories (real equipment accessible at distance) and data sets from physical laboratory experiments (together called “online labs”) for large-scale use in education. In this way, Go-Lab enables inquiry-based learning that promotes acquisition of deep conceptual domain knowledge and inquiry skills, with the further intent of interesting students in careers in science. For students, Go-Lab offers the opportunity to perform scientific experiments with online labs in pedagogically structured learning spaces. Go-Lab’s inquiry learning spaces (ILSs) structure the students’ inquiry process through an inquiry cycle and provide students with guidance in which dedicated (and connected) scaffolds for inquiry processes play a pivotal role. Teachers can create and adapt inquiry learning phases and the associated guidance in an ILS through a simple wiki-like interface and can add scaffolds and tools to an ILS using a straightforward drag and drop feature. Teachers can also adapt scaffolds and tools (e.g., change the language or the concepts available in a concept mapper) through an “app composer”. In creating ILSs, teachers are supported by scenarios and associated defaults ILSs that can be used as a starting point for development. In addition, teachers are offered a community framework to disseminate best practices and find mutual support. For lab-owners, Go-Lab provides open interfacing solutions for easily plugging in their online labs and sharing them in the Go-Lab federation of online labs. In its first year, Go-Lab created ILSs for thirteen online labs from different lab providers, including renowned research organizations (e.g., CERN, ESA) that participate in the consortium. The design of these inquiry learning spaces has been evaluated through mock-ups and prototypes with students and teachers. More advanced and later versions will be evaluated and validated in large scale pilots. The sustainability of Go-Lab will come from the opportunity for the larger science education community to add new online labs and share ILSs. An open and Web-based community will capitalize on the “collective intelligence” of students, teachers, and scientists",
    keywords = "METIS-310492, IR-95862",
    author = "{de Jong}, Ton and Sofoklis Sotiriou and Dennis Gillet",
    note = "Open access",
    year = "2014",
    doi = "10.1186/s40561-014-0003-6",
    language = "Undefined",
    volume = "1",
    pages = "3--",
    journal = "Smart learning environments",
    issn = "2196-7091",
    publisher = "SpringerOpen",
    number = "1",

    }

    Innovations in STEM education: the Go-Lab federation of online labs. / de Jong, Ton; Sotiriou, Sofoklis; Gillet, Dennis.

    In: Smart learning environments, Vol. 1, No. 1, 3, 2014, p. 3-.

    Research output: Contribution to journalArticleAcademicpeer-review

    TY - JOUR

    T1 - Innovations in STEM education: the Go-Lab federation of online labs

    AU - de Jong, Ton

    AU - Sotiriou, Sofoklis

    AU - Gillet, Dennis

    N1 - Open access

    PY - 2014

    Y1 - 2014

    N2 - The Go-Lab federation of online labs opens up virtual laboratories (simulation), remote laboratories (real equipment accessible at distance) and data sets from physical laboratory experiments (together called “online labs”) for large-scale use in education. In this way, Go-Lab enables inquiry-based learning that promotes acquisition of deep conceptual domain knowledge and inquiry skills, with the further intent of interesting students in careers in science. For students, Go-Lab offers the opportunity to perform scientific experiments with online labs in pedagogically structured learning spaces. Go-Lab’s inquiry learning spaces (ILSs) structure the students’ inquiry process through an inquiry cycle and provide students with guidance in which dedicated (and connected) scaffolds for inquiry processes play a pivotal role. Teachers can create and adapt inquiry learning phases and the associated guidance in an ILS through a simple wiki-like interface and can add scaffolds and tools to an ILS using a straightforward drag and drop feature. Teachers can also adapt scaffolds and tools (e.g., change the language or the concepts available in a concept mapper) through an “app composer”. In creating ILSs, teachers are supported by scenarios and associated defaults ILSs that can be used as a starting point for development. In addition, teachers are offered a community framework to disseminate best practices and find mutual support. For lab-owners, Go-Lab provides open interfacing solutions for easily plugging in their online labs and sharing them in the Go-Lab federation of online labs. In its first year, Go-Lab created ILSs for thirteen online labs from different lab providers, including renowned research organizations (e.g., CERN, ESA) that participate in the consortium. The design of these inquiry learning spaces has been evaluated through mock-ups and prototypes with students and teachers. More advanced and later versions will be evaluated and validated in large scale pilots. The sustainability of Go-Lab will come from the opportunity for the larger science education community to add new online labs and share ILSs. An open and Web-based community will capitalize on the “collective intelligence” of students, teachers, and scientists

    AB - The Go-Lab federation of online labs opens up virtual laboratories (simulation), remote laboratories (real equipment accessible at distance) and data sets from physical laboratory experiments (together called “online labs”) for large-scale use in education. In this way, Go-Lab enables inquiry-based learning that promotes acquisition of deep conceptual domain knowledge and inquiry skills, with the further intent of interesting students in careers in science. For students, Go-Lab offers the opportunity to perform scientific experiments with online labs in pedagogically structured learning spaces. Go-Lab’s inquiry learning spaces (ILSs) structure the students’ inquiry process through an inquiry cycle and provide students with guidance in which dedicated (and connected) scaffolds for inquiry processes play a pivotal role. Teachers can create and adapt inquiry learning phases and the associated guidance in an ILS through a simple wiki-like interface and can add scaffolds and tools to an ILS using a straightforward drag and drop feature. Teachers can also adapt scaffolds and tools (e.g., change the language or the concepts available in a concept mapper) through an “app composer”. In creating ILSs, teachers are supported by scenarios and associated defaults ILSs that can be used as a starting point for development. In addition, teachers are offered a community framework to disseminate best practices and find mutual support. For lab-owners, Go-Lab provides open interfacing solutions for easily plugging in their online labs and sharing them in the Go-Lab federation of online labs. In its first year, Go-Lab created ILSs for thirteen online labs from different lab providers, including renowned research organizations (e.g., CERN, ESA) that participate in the consortium. The design of these inquiry learning spaces has been evaluated through mock-ups and prototypes with students and teachers. More advanced and later versions will be evaluated and validated in large scale pilots. The sustainability of Go-Lab will come from the opportunity for the larger science education community to add new online labs and share ILSs. An open and Web-based community will capitalize on the “collective intelligence” of students, teachers, and scientists

    KW - METIS-310492

    KW - IR-95862

    U2 - 10.1186/s40561-014-0003-6

    DO - 10.1186/s40561-014-0003-6

    M3 - Article

    VL - 1

    SP - 3-

    JO - Smart learning environments

    JF - Smart learning environments

    SN - 2196-7091

    IS - 1

    M1 - 3

    ER -