TY - JOUR
T1 - Insuring forage through satellites
T2 - testing alternative indices against grassland production estimates for France
AU - Roumiguié, Antoine
AU - Sigel, Grégoire
AU - Poilvé, Hervé
AU - Bouchard, Bruno
AU - Vrieling, A.
AU - Jacquin, Anne
PY - 2017/2/20
Y1 - 2017/2/20
N2 - To mitigate impacts of climate-related reduced productivity of French grasslands, a new insurance scheme bases indemnity payouts to farmers on a Moderate Resolution Imaging Spectroradiometer (MODIS)-derived forage production index (FPI). The objective of this study is to compare several approaches for deriving FPI from satellite data to assess whether better relationships with forage productivity can be attained. The approaches assess pasture productivity using as five input factors estimated from remote sensing and ancillary data, i.e.: (1) fraction of absorbed photosynthetically active radiation (fAPAR); (2) radiation use efficiency estimates; (3) PAR estimates; (4) leaf senescence modelling; and (5) growing season modelling. All the possible combinations from these five factors, including different modalities to estimate some of them, lead to 768 models. Model outputs are compared to reference grassland production estimates provided by a mechanistic model (Information et Suivi Objectif des Prairies – ISOP – system) for a sample of 25 forage regions across France for the years 2003, 2007, 2009, 2011, and 2012 (containing one humid, two normal, and two dry years). Results revealed that: (1) the baseline model based on the fraction of green vegetation cover (fCover) seasonal integral has a reasonable linear relationship to production estimates (standardized root mean square error - SRMSE = 0.57 and coefficient of determination – R2 = 0.68); (2) performance of the baseline model improved with a quadratic function (SRMSE = 0.54 and R2 = 0.71); (3) 34 models outperform the baseline model. We, therefore, suggest to replace the baseline model with the best-performing model (SRMSE = 0.42 and R2 = 0.83) in the insurance product. This model integrates daily fCover with a water stress index and sums these over a variable monitoring period in space and time characterized by the phenological indicators start of season and end of season derived from the fCover annual profile.
AB - To mitigate impacts of climate-related reduced productivity of French grasslands, a new insurance scheme bases indemnity payouts to farmers on a Moderate Resolution Imaging Spectroradiometer (MODIS)-derived forage production index (FPI). The objective of this study is to compare several approaches for deriving FPI from satellite data to assess whether better relationships with forage productivity can be attained. The approaches assess pasture productivity using as five input factors estimated from remote sensing and ancillary data, i.e.: (1) fraction of absorbed photosynthetically active radiation (fAPAR); (2) radiation use efficiency estimates; (3) PAR estimates; (4) leaf senescence modelling; and (5) growing season modelling. All the possible combinations from these five factors, including different modalities to estimate some of them, lead to 768 models. Model outputs are compared to reference grassland production estimates provided by a mechanistic model (Information et Suivi Objectif des Prairies – ISOP – system) for a sample of 25 forage regions across France for the years 2003, 2007, 2009, 2011, and 2012 (containing one humid, two normal, and two dry years). Results revealed that: (1) the baseline model based on the fraction of green vegetation cover (fCover) seasonal integral has a reasonable linear relationship to production estimates (standardized root mean square error - SRMSE = 0.57 and coefficient of determination – R2 = 0.68); (2) performance of the baseline model improved with a quadratic function (SRMSE = 0.54 and R2 = 0.71); (3) 34 models outperform the baseline model. We, therefore, suggest to replace the baseline model with the best-performing model (SRMSE = 0.42 and R2 = 0.83) in the insurance product. This model integrates daily fCover with a water stress index and sums these over a variable monitoring period in space and time characterized by the phenological indicators start of season and end of season derived from the fCover annual profile.
KW - ITC-ISI-JOURNAL-ARTICLE
KW - 22/4 OA procedure
UR - https://ezproxy2.utwente.nl/login?url=http://dx.doi.org/10.1080/01431161.2016.1230288
UR - https://ezproxy2.utwente.nl/login?url=https://webapps.itc.utwente.nl/library/2018/isi/vrieling_ins.pdf
U2 - 10.1080/01431161.2016.1230288
DO - 10.1080/01431161.2016.1230288
M3 - Article
SN - 0143-1161
VL - 38
SP - 1912
EP - 1939
JO - International journal of remote sensing
JF - International journal of remote sensing
IS - 7
ER -