Integrated microfluidic biosensing platform for simultaneous confocal microscopy and electrophysiological measurements on bilayer lipid membranes and ion channels

Verena C. Schulze Greiving-Stimberg, Johan G. Bomer, Hans L. de Boer, Albert van den Berg, Severine le Gac (Corresponding Author)

    Research output: Contribution to journalArticleAcademicpeer-review

    5 Citations (Scopus)
    143 Downloads (Pure)

    Abstract

    Combining high-resolution imaging and electrophysiological recordings is key for various types of experimentation on lipid bilayers and ion channels. Here, we propose an integrated biosensing platform consisting of a microfluidic cartridge and a dedicated chip-holder to conduct such dual measurements on suspended lipid bilayers, in a user-friendly manner. To illustrate the potential of the integrated platform, we characterize lipid bilayers in terms of thickness and fluidity while simultaneously monitoring single ion channel currents. For that purpose, POPC lipid bilayers are supplemented with a fluorescently-tagged phospholipid (NBD-PE, 1% mol) for Fluorescence Recovery After Photobleaching (FRAP) measurements and a model ion channel (gramicidin, 1 nM). These combined measurements reveal that NBD-PE has no effect on the lipid bilayer thickness while gramicidin induces thinning of the membrane. Furthermore, the presence of gramicidin does not alter the lipid bilayer fluidity. Surprisingly, in lipid bilayers supplemented with both probes, a reduction in gramicidin open probability and lifetime is observed compared to lipid bilayers with gramicidin only, suggesting an influence of NBD-PE on the gramicidin ion function. Altogether, our proposed microfluidic biosensing platform in combination with the herein presented multi-parametric measurement scheme paves the way to explore the interdependent relationship between lipid bilayer properties and ion channel function.
    Original languageEnglish
    Pages (from-to)496-503
    Number of pages8
    JournalElectrophoresis
    Volume39
    Issue number3
    Early online date29 Nov 2017
    DOIs
    Publication statusPublished - 1 Feb 2018

    Keywords

    • UT-Hybrid-D
    • Lipid bilayer
    • Confocal microscopy
    • Gramicidin
    • Microfluidics

    Fingerprint

    Dive into the research topics of 'Integrated microfluidic biosensing platform for simultaneous confocal microscopy and electrophysiological measurements on bilayer lipid membranes and ion channels'. Together they form a unique fingerprint.

    Cite this