Integration of in-situ and multi-sensor satellite observations for long-term water quality monitoring in coastal areas

B. Arabi*, M.S. Salama, Jaime Pitarch, W. Verhoef

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

3 Citations (Scopus)

Abstract

Recently, there have been significant efforts in the integration of in-situ and satellite observations for effective monitoring of coastal areas (e.g., the Copernicus program of the European Space Agency). In this study, a 15-year diurnal variation of Water Constituent Concentrations (WCCs) was retrieved from multi-sensor satellite images and in-situ hyperspectral measurements using Radiative Transfer (RT) modeling in the Dutch Wadden Sea. The existing RT model 2SeaColor was inverted against time series of in-situ hyperspectral measurements of water leaving reflectances (Rrs [sr−1]) for the simultaneous retrieval of WCCs (i.e., Chlorophyll-a (Chla), Suspended Particulate Matter (SPM), Dissolved Organic Matter (CDOM)) on a daily basis between 2003 and 2018 at the NIOZ jetty station (the NJS) located in the Dutch part of the Wadden Sea. At the same time, the existing coupled atmosphere-hydro-optical RT model MOD2SEA was used for the simultaneous retrieval of WCCs from time series of multi-sensor satellite images of the MEdium Resolution Imaging Spectrometer (MERIS) onboard ENVISAT, Multispectral Instrument (MSI) onboard Sentinel-2 and Ocean and Land Colour Instrument (OLCI) onboard Sentinel-3 between 2003 and 2018 over the Dutch Wadden Sea. At the NJS, a direct comparison (Taylor diagram and statistical analysis) showed strong agreement between in-situ and satellite-derived WCC values (Chla: R2 ≥ 0.70, RMSE ≤7.5 [mg m−3]; SPM: R2 ≥ 0.72, RMSE ≤5.5 [g m−3]; CDOM absorption at 440 nm: R2 ≥ 0.67, RMSE ≤1.7 [m−1]). Next, the plausibility of the spatial variation of retrieved WCCs over the study area was evaluated by generating maps of Chla [mg m−3], SPM [g m−3], and CDOM absorption at 440 nm [m−1] from MERIS and OLCI images using the MOD2SEA model. The integration of the spatio-temporal WCC data obtained from in-situ measurements and satellite images in this study finds applications for the detection of anomaly events and serves as a warning for management actions in the complex coastal waters of the Wadden Sea.
Original languageEnglish
Article number111632
Pages (from-to)1-17
Number of pages17
JournalRemote sensing of environment
Volume239
Early online date14 Jan 2020
DOIs
Publication statusPublished - 15 Mar 2020

Keywords

  • ITC-ISI-JOURNAL-ARTICLE

Fingerprint Dive into the research topics of 'Integration of in-situ and multi-sensor satellite observations for long-term water quality monitoring in coastal areas'. Together they form a unique fingerprint.

Cite this