Integration of in-situ and multi-sensor satellite observations for long-term water quality monitoring in coastal areas

B. Arabi*, M.S. Salama, Jaime Pitarch, W. Verhoef

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

Recently, there have been significant efforts in the integration of in-situ and satellite observations for effective monitoring of coastal areas (e.g., the Copernicus program of the European Space Agency). In this study, a 15-year diurnal variation of Water Constituent Concentrations (WCCs) was retrieved from multi-sensor satellite images and in-situ hyperspectral measurements using Radiative Transfer (RT) modeling in the Dutch Wadden Sea. The existing RT model 2SeaColor was inverted against time series of in-situ hyperspectral measurements of water leaving reflectances (Rrs [sr−1]) for the simultaneous retrieval of WCCs (i.e., Chlorophyll-a (Chla), Suspended Particulate Matter (SPM), Dissolved Organic Matter (CDOM)) on a daily basis between 2003 and 2018 at the NIOZ jetty station (the NJS) located in the Dutch part of the Wadden Sea. At the same time, the existing coupled atmosphere-hydro-optical RT model MOD2SEA was used for the simultaneous retrieval of WCCs from time series of multi-sensor satellite images of the MEdium Resolution Imaging Spectrometer (MERIS) onboard ENVISAT, Multispectral Instrument (MSI) onboard Sentinel-2 and Ocean and Land Colour Instrument (OLCI) onboard Sentinel-3 between 2003 and 2018 over the Dutch Wadden Sea. At the NJS, a direct comparison (Taylor diagram and statistical analysis) showed strong agreement between in-situ and satellite-derived WCC values (Chla: R2 ≥ 0.70, RMSE ≤7.5 [mg m−3]; SPM: R2 ≥ 0.72, RMSE ≤5.5 [g m−3]; CDOM absorption at 440 nm: R2 ≥ 0.67, RMSE ≤1.7 [m−1]). Next, the plausibility of the spatial variation of retrieved WCCs over the study area was evaluated by generating maps of Chla [mg m−3], SPM [g m−3], and CDOM absorption at 440 nm [m−1] from MERIS and OLCI images using the MOD2SEA model. The integration of the spatio-temporal WCC data obtained from in-situ measurements and satellite images in this study finds applications for the detection of anomaly events and serves as a warning for management actions in the complex coastal waters of the Wadden Sea.
Original languageEnglish
Article number111632
Pages (from-to)1-17
Number of pages17
JournalRemote sensing of environment
Volume239
Early online date14 Jan 2020
DOIs
Publication statusE-pub ahead of print/First online - 14 Jan 2020

Fingerprint

satellite sensor
Water quality
sensors (equipment)
water quality
Satellites
Monitoring
monitoring
Sensors
suspended particulate matter
Water
Radiative transfer
in situ measurement
Chlorophyll
water
radiative transfer
MERIS
chlorophyll a
particulates
spectrometers
chlorophyll

Keywords

  • ITC-ISI-JOURNAL-ARTICLE

Cite this

@article{e3b0469971f04c3998cec201e4ce368b,
title = "Integration of in-situ and multi-sensor satellite observations for long-term water quality monitoring in coastal areas",
abstract = "Recently, there have been significant efforts in the integration of in-situ and satellite observations for effective monitoring of coastal areas (e.g., the Copernicus program of the European Space Agency). In this study, a 15-year diurnal variation of Water Constituent Concentrations (WCCs) was retrieved from multi-sensor satellite images and in-situ hyperspectral measurements using Radiative Transfer (RT) modeling in the Dutch Wadden Sea. The existing RT model 2SeaColor was inverted against time series of in-situ hyperspectral measurements of water leaving reflectances (Rrs [sr−1]) for the simultaneous retrieval of WCCs (i.e., Chlorophyll-a (Chla), Suspended Particulate Matter (SPM), Dissolved Organic Matter (CDOM)) on a daily basis between 2003 and 2018 at the NIOZ jetty station (the NJS) located in the Dutch part of the Wadden Sea. At the same time, the existing coupled atmosphere-hydro-optical RT model MOD2SEA was used for the simultaneous retrieval of WCCs from time series of multi-sensor satellite images of the MEdium Resolution Imaging Spectrometer (MERIS) onboard ENVISAT, Multispectral Instrument (MSI) onboard Sentinel-2 and Ocean and Land Colour Instrument (OLCI) onboard Sentinel-3 between 2003 and 2018 over the Dutch Wadden Sea. At the NJS, a direct comparison (Taylor diagram and statistical analysis) showed strong agreement between in-situ and satellite-derived WCC values (Chla: R2 ≥ 0.70, RMSE ≤7.5 [mg m−3]; SPM: R2 ≥ 0.72, RMSE ≤5.5 [g m−3]; CDOM absorption at 440 nm: R2 ≥ 0.67, RMSE ≤1.7 [m−1]). Next, the plausibility of the spatial variation of retrieved WCCs over the study area was evaluated by generating maps of Chla [mg m−3], SPM [g m−3], and CDOM absorption at 440 nm [m−1] from MERIS and OLCI images using the MOD2SEA model. The integration of the spatio-temporal WCC data obtained from in-situ measurements and satellite images in this study finds applications for the detection of anomaly events and serves as a warning for management actions in the complex coastal waters of the Wadden Sea.",
keywords = "ITC-ISI-JOURNAL-ARTICLE",
author = "B. Arabi and M.S. Salama and Jaime Pitarch and W. Verhoef",
year = "2020",
month = "1",
day = "14",
doi = "10.1016/j.rse.2020.111632",
language = "English",
volume = "239",
pages = "1--17",
journal = "Remote sensing of environment",
issn = "0034-4257",
publisher = "Elsevier",

}

Integration of in-situ and multi-sensor satellite observations for long-term water quality monitoring in coastal areas. / Arabi, B.; Salama, M.S.; Pitarch, Jaime; Verhoef, W.

In: Remote sensing of environment, Vol. 239, 111632, 15.03.2020, p. 1-17.

Research output: Contribution to journalArticleAcademicpeer-review

TY - JOUR

T1 - Integration of in-situ and multi-sensor satellite observations for long-term water quality monitoring in coastal areas

AU - Arabi, B.

AU - Salama, M.S.

AU - Pitarch, Jaime

AU - Verhoef, W.

PY - 2020/1/14

Y1 - 2020/1/14

N2 - Recently, there have been significant efforts in the integration of in-situ and satellite observations for effective monitoring of coastal areas (e.g., the Copernicus program of the European Space Agency). In this study, a 15-year diurnal variation of Water Constituent Concentrations (WCCs) was retrieved from multi-sensor satellite images and in-situ hyperspectral measurements using Radiative Transfer (RT) modeling in the Dutch Wadden Sea. The existing RT model 2SeaColor was inverted against time series of in-situ hyperspectral measurements of water leaving reflectances (Rrs [sr−1]) for the simultaneous retrieval of WCCs (i.e., Chlorophyll-a (Chla), Suspended Particulate Matter (SPM), Dissolved Organic Matter (CDOM)) on a daily basis between 2003 and 2018 at the NIOZ jetty station (the NJS) located in the Dutch part of the Wadden Sea. At the same time, the existing coupled atmosphere-hydro-optical RT model MOD2SEA was used for the simultaneous retrieval of WCCs from time series of multi-sensor satellite images of the MEdium Resolution Imaging Spectrometer (MERIS) onboard ENVISAT, Multispectral Instrument (MSI) onboard Sentinel-2 and Ocean and Land Colour Instrument (OLCI) onboard Sentinel-3 between 2003 and 2018 over the Dutch Wadden Sea. At the NJS, a direct comparison (Taylor diagram and statistical analysis) showed strong agreement between in-situ and satellite-derived WCC values (Chla: R2 ≥ 0.70, RMSE ≤7.5 [mg m−3]; SPM: R2 ≥ 0.72, RMSE ≤5.5 [g m−3]; CDOM absorption at 440 nm: R2 ≥ 0.67, RMSE ≤1.7 [m−1]). Next, the plausibility of the spatial variation of retrieved WCCs over the study area was evaluated by generating maps of Chla [mg m−3], SPM [g m−3], and CDOM absorption at 440 nm [m−1] from MERIS and OLCI images using the MOD2SEA model. The integration of the spatio-temporal WCC data obtained from in-situ measurements and satellite images in this study finds applications for the detection of anomaly events and serves as a warning for management actions in the complex coastal waters of the Wadden Sea.

AB - Recently, there have been significant efforts in the integration of in-situ and satellite observations for effective monitoring of coastal areas (e.g., the Copernicus program of the European Space Agency). In this study, a 15-year diurnal variation of Water Constituent Concentrations (WCCs) was retrieved from multi-sensor satellite images and in-situ hyperspectral measurements using Radiative Transfer (RT) modeling in the Dutch Wadden Sea. The existing RT model 2SeaColor was inverted against time series of in-situ hyperspectral measurements of water leaving reflectances (Rrs [sr−1]) for the simultaneous retrieval of WCCs (i.e., Chlorophyll-a (Chla), Suspended Particulate Matter (SPM), Dissolved Organic Matter (CDOM)) on a daily basis between 2003 and 2018 at the NIOZ jetty station (the NJS) located in the Dutch part of the Wadden Sea. At the same time, the existing coupled atmosphere-hydro-optical RT model MOD2SEA was used for the simultaneous retrieval of WCCs from time series of multi-sensor satellite images of the MEdium Resolution Imaging Spectrometer (MERIS) onboard ENVISAT, Multispectral Instrument (MSI) onboard Sentinel-2 and Ocean and Land Colour Instrument (OLCI) onboard Sentinel-3 between 2003 and 2018 over the Dutch Wadden Sea. At the NJS, a direct comparison (Taylor diagram and statistical analysis) showed strong agreement between in-situ and satellite-derived WCC values (Chla: R2 ≥ 0.70, RMSE ≤7.5 [mg m−3]; SPM: R2 ≥ 0.72, RMSE ≤5.5 [g m−3]; CDOM absorption at 440 nm: R2 ≥ 0.67, RMSE ≤1.7 [m−1]). Next, the plausibility of the spatial variation of retrieved WCCs over the study area was evaluated by generating maps of Chla [mg m−3], SPM [g m−3], and CDOM absorption at 440 nm [m−1] from MERIS and OLCI images using the MOD2SEA model. The integration of the spatio-temporal WCC data obtained from in-situ measurements and satellite images in this study finds applications for the detection of anomaly events and serves as a warning for management actions in the complex coastal waters of the Wadden Sea.

KW - ITC-ISI-JOURNAL-ARTICLE

UR - https://ezproxy2.utwente.nl/login?url=https://doi.org/10.1016/j.rse.2020.111632

UR - https://ezproxy2.utwente.nl/login?url=https://library.itc.utwente.nl/login/2020/isi/arabi_int.pdf

U2 - 10.1016/j.rse.2020.111632

DO - 10.1016/j.rse.2020.111632

M3 - Article

VL - 239

SP - 1

EP - 17

JO - Remote sensing of environment

JF - Remote sensing of environment

SN - 0034-4257

M1 - 111632

ER -