Intercalating quaternary nicotinamide-based poly(amido amine)s for gene delivery

L.J. van der Aa, P. Vader, G. Storm, R.M. Schiffelers, J.F.J. Engbersen

Research output: Contribution to journalArticleAcademicpeer-review

9 Citations (Scopus)

Abstract

In the development of potent polymeric gene carriers for gene therapy, a good interaction between the polymer and the nucleotide is indispensable to form small and stable polyplexes. Polymers with relatively high cationic charge density are frequently used to provide these interactions, but high cationic charge is usually associated with severe cytotoxicity. In this study an alternative, nucleotide specific binding interaction based on intercalation was investigated to improve polymer/pDNA complex formation. For this purpose bioreducible poly(amido amine) copolymers (p(CBA-ABOL/Nic)) were synthesized with different degrees of intercalating quaternary nicotinamide (Nic) groups and amide-substituted derivatives in their side chains. The quaternary nicotinamide group was chosen as intercalating moiety because this group is part of the naturally occurring NAD+ coenzyme and is therefore expected to be non-toxic and non-carcinogenic. The presence of the quaternary nicotinamide moieties in the poly(amido amine) copolymers showed to effectively promote self-assembled polyplex formation already at low polymer/DNA ratios and results in decreased polyplex size and increased stability of the polyplexes. Furthermore, in contrast to the primary amine functionalized analogs the quaternary nicotinamide polymers showed to be non-hemolytic, indicating their compatibility with cell membranes. Polymers with 25% of Nic in the side chains induced GFP expressions of about 4–5 times that of linear PEI, which is comparable with p(CBA-ABOL), the parent PAA without Nic, but at a two- to fourfold lower required polymer dose. N-phenylation of the nicotinamide functionality even further reduces the required polymer dose to form stable polyplexes, which is a major improvement for these kinds of cationic polymers.
Original languageEnglish
Pages (from-to)11-20
JournalJournal of controlled release
Volume195
DOIs
Publication statusPublished - 2014
Event13th European Symposium on Controlled Drug Delivery, ESCDD 2014 - Egmond aan Zee, Netherlands
Duration: 16 Apr 201418 Apr 2014
Conference number: 13

Fingerprint Dive into the research topics of 'Intercalating quaternary nicotinamide-based poly(amido amine)s for gene delivery'. Together they form a unique fingerprint.

Cite this