Abstract
Injection of quasiparticles with an energy larger than the superconducting gap into a superconducting strip results in breaking of Cooper-pairs and hence the suppression of the superconducting properties. Experiments using planar injection devices made of HTS materials with various barrier materials showed current gains varying from 2 up to 15 at 77 K. By changing the junction size and therefore the superconducting volume the current gain could be increased. A further reduction of the junction volume is very difficult using the planar device geometry. However, by applying the ramp-type technology it is possible to reduce the junction volume by at least one order of magnitude and a further increase in current gain is expected. Another advantage of this technology is the formation of in-situ barriers and electrodes and hence a better control of the junction characteristics should be possible, also the compatibility with the processes involved making RSFQ devices can be interesting for later applications. We have fabricated ramp-type injection devices, using various types of barriers. Characterization of these devices has been performed and the results of these experiments will be presented and discussed.
Original language | English |
---|---|
Pages (from-to) | 3644-3647 |
Number of pages | 4 |
Journal | IEEE transactions on applied superconductivity |
Volume | 9 |
Issue number | 2 |
DOIs | |
Publication status | Published - 1999 |