TY - JOUR
T1 - Ischemic cerebral damage: An appraisal of synaptic failure
AU - Hofmeijer, Jeannette
AU - van Putten, Michel Johannes Antonius Maria
PY - 2012
Y1 - 2012
N2 - In the human brain, ≈30% of the energy is spent on synaptic transmission. Disappearance of synaptic activity is the earliest consequence of cerebral ischemia. The changes of synaptic function are generally assumed to be reversible and persistent damage is associated with membrane failure and neuronal death. However, there is overwhelming experimental evidence of isolated, but persistent, synaptic failure resulting from mild or moderate cerebral ischemia. Early failure results from presynaptic damage with impaired transmitter release. Proposed mechanisms include dysfunction of adenosine triphosphate-dependent calcium channels and a disturbed docking of glutamate-containing vesicles resulting from impaired phosphorylation. We review energy distribution among neuronal functions, focusing on energy usage of synaptic transmission. We summarize the effect of ischemia on neurotransmission and the evidence of long-lasting synaptic failure as a cause of persistent symptoms in patients with cerebral ischemia. Finally, we discuss the implications of synaptic failure in the diagnosis of cerebral ischemia, including the limited sensitivity of diffusion-weighted MRI in those cases in which damage is presumably limited to the synapses
AB - In the human brain, ≈30% of the energy is spent on synaptic transmission. Disappearance of synaptic activity is the earliest consequence of cerebral ischemia. The changes of synaptic function are generally assumed to be reversible and persistent damage is associated with membrane failure and neuronal death. However, there is overwhelming experimental evidence of isolated, but persistent, synaptic failure resulting from mild or moderate cerebral ischemia. Early failure results from presynaptic damage with impaired transmitter release. Proposed mechanisms include dysfunction of adenosine triphosphate-dependent calcium channels and a disturbed docking of glutamate-containing vesicles resulting from impaired phosphorylation. We review energy distribution among neuronal functions, focusing on energy usage of synaptic transmission. We summarize the effect of ischemia on neurotransmission and the evidence of long-lasting synaptic failure as a cause of persistent symptoms in patients with cerebral ischemia. Finally, we discuss the implications of synaptic failure in the diagnosis of cerebral ischemia, including the limited sensitivity of diffusion-weighted MRI in those cases in which damage is presumably limited to the synapses
KW - METIS-292199
KW - IR-82947
U2 - 10.1161/STROKEAHA.111.632943
DO - 10.1161/STROKEAHA.111.632943
M3 - Article
SN - 0039-2499
VL - 43
SP - 607
EP - 615
JO - Stroke
JF - Stroke
IS - 2
ER -