Kinetics of the reaction of CO2 with aqueous potassium salt of taurine and glycine

P.S. Kumar Paramasivam Senthil, Kees Hogendoorn, Geert Versteeg, P.H.M. Feron

Research output: Contribution to journalArticleAcademicpeer-review

184 Citations (Scopus)

Abstract

The kinetics of the reaction between CO2 and aqueous potassium salts of taurine and glycine was measured at 295 K in a stirred-cell reactor with a flat gas-liquid interface. For aqueous potassium taurate solutions, the temperature effect on the reaction kinetics was measured at 285 and 305 K. Unlike aqueous primary alkanolamines, the partial reaction order in amino acid salt changes from one at low salt concentration to approximately 1.5 at salt concentrations as high as 3,000 mol·m-3. At low salt concentrations, the measured apparent rate constant (kapp) for potassium glycinate is comparable to the values in literature. In the absence of reliable information in the literature on the kinetics and mechanism of the reaction, the applicability of the zwitterion and termolecular mechanism (proposed originally for alkanolamines) was explored. For the zwitterion mechanism, the forward second-order reaction rate constant (k2) of the CO2 reaction with amino acid salt seems to be much higher than for alkanolamines of similar basicity, indicating that the Bronsted plot for amino acid salts might differ from that of alkanolamines. The contribution of water to the deprotonation of zwitterion seems to be more significant than reported values for aqueous secondary alkanolamines.
Original languageUndefined
Pages (from-to)203-213
JournalAIChE journal
Volume49
Issue number1
DOIs
Publication statusPublished - 2003

Keywords

  • IR-71913
  • METIS-217442

Cite this

Kumar Paramasivam Senthil, P. S., Hogendoorn, K., Versteeg, G., & Feron, P. H. M. (2003). Kinetics of the reaction of CO2 with aqueous potassium salt of taurine and glycine. AIChE journal, 49(1), 203-213. https://doi.org/10.1002/aic.690490118
Kumar Paramasivam Senthil, P.S. ; Hogendoorn, Kees ; Versteeg, Geert ; Feron, P.H.M. / Kinetics of the reaction of CO2 with aqueous potassium salt of taurine and glycine. In: AIChE journal. 2003 ; Vol. 49, No. 1. pp. 203-213.
@article{9ad0246ee414450187057d9cee660383,
title = "Kinetics of the reaction of CO2 with aqueous potassium salt of taurine and glycine",
abstract = "The kinetics of the reaction between CO2 and aqueous potassium salts of taurine and glycine was measured at 295 K in a stirred-cell reactor with a flat gas-liquid interface. For aqueous potassium taurate solutions, the temperature effect on the reaction kinetics was measured at 285 and 305 K. Unlike aqueous primary alkanolamines, the partial reaction order in amino acid salt changes from one at low salt concentration to approximately 1.5 at salt concentrations as high as 3,000 mol·m-3. At low salt concentrations, the measured apparent rate constant (kapp) for potassium glycinate is comparable to the values in literature. In the absence of reliable information in the literature on the kinetics and mechanism of the reaction, the applicability of the zwitterion and termolecular mechanism (proposed originally for alkanolamines) was explored. For the zwitterion mechanism, the forward second-order reaction rate constant (k2) of the CO2 reaction with amino acid salt seems to be much higher than for alkanolamines of similar basicity, indicating that the Bronsted plot for amino acid salts might differ from that of alkanolamines. The contribution of water to the deprotonation of zwitterion seems to be more significant than reported values for aqueous secondary alkanolamines.",
keywords = "IR-71913, METIS-217442",
author = "{Kumar Paramasivam Senthil}, P.S. and Kees Hogendoorn and Geert Versteeg and P.H.M. Feron",
year = "2003",
doi = "10.1002/aic.690490118",
language = "Undefined",
volume = "49",
pages = "203--213",
journal = "AIChE journal",
issn = "0001-1541",
publisher = "Wiley-Blackwell",
number = "1",

}

Kumar Paramasivam Senthil, PS, Hogendoorn, K, Versteeg, G & Feron, PHM 2003, 'Kinetics of the reaction of CO2 with aqueous potassium salt of taurine and glycine' AIChE journal, vol. 49, no. 1, pp. 203-213. https://doi.org/10.1002/aic.690490118

Kinetics of the reaction of CO2 with aqueous potassium salt of taurine and glycine. / Kumar Paramasivam Senthil, P.S.; Hogendoorn, Kees; Versteeg, Geert; Feron, P.H.M.

In: AIChE journal, Vol. 49, No. 1, 2003, p. 203-213.

Research output: Contribution to journalArticleAcademicpeer-review

TY - JOUR

T1 - Kinetics of the reaction of CO2 with aqueous potassium salt of taurine and glycine

AU - Kumar Paramasivam Senthil, P.S.

AU - Hogendoorn, Kees

AU - Versteeg, Geert

AU - Feron, P.H.M.

PY - 2003

Y1 - 2003

N2 - The kinetics of the reaction between CO2 and aqueous potassium salts of taurine and glycine was measured at 295 K in a stirred-cell reactor with a flat gas-liquid interface. For aqueous potassium taurate solutions, the temperature effect on the reaction kinetics was measured at 285 and 305 K. Unlike aqueous primary alkanolamines, the partial reaction order in amino acid salt changes from one at low salt concentration to approximately 1.5 at salt concentrations as high as 3,000 mol·m-3. At low salt concentrations, the measured apparent rate constant (kapp) for potassium glycinate is comparable to the values in literature. In the absence of reliable information in the literature on the kinetics and mechanism of the reaction, the applicability of the zwitterion and termolecular mechanism (proposed originally for alkanolamines) was explored. For the zwitterion mechanism, the forward second-order reaction rate constant (k2) of the CO2 reaction with amino acid salt seems to be much higher than for alkanolamines of similar basicity, indicating that the Bronsted plot for amino acid salts might differ from that of alkanolamines. The contribution of water to the deprotonation of zwitterion seems to be more significant than reported values for aqueous secondary alkanolamines.

AB - The kinetics of the reaction between CO2 and aqueous potassium salts of taurine and glycine was measured at 295 K in a stirred-cell reactor with a flat gas-liquid interface. For aqueous potassium taurate solutions, the temperature effect on the reaction kinetics was measured at 285 and 305 K. Unlike aqueous primary alkanolamines, the partial reaction order in amino acid salt changes from one at low salt concentration to approximately 1.5 at salt concentrations as high as 3,000 mol·m-3. At low salt concentrations, the measured apparent rate constant (kapp) for potassium glycinate is comparable to the values in literature. In the absence of reliable information in the literature on the kinetics and mechanism of the reaction, the applicability of the zwitterion and termolecular mechanism (proposed originally for alkanolamines) was explored. For the zwitterion mechanism, the forward second-order reaction rate constant (k2) of the CO2 reaction with amino acid salt seems to be much higher than for alkanolamines of similar basicity, indicating that the Bronsted plot for amino acid salts might differ from that of alkanolamines. The contribution of water to the deprotonation of zwitterion seems to be more significant than reported values for aqueous secondary alkanolamines.

KW - IR-71913

KW - METIS-217442

U2 - 10.1002/aic.690490118

DO - 10.1002/aic.690490118

M3 - Article

VL - 49

SP - 203

EP - 213

JO - AIChE journal

JF - AIChE journal

SN - 0001-1541

IS - 1

ER -

Kumar Paramasivam Senthil PS, Hogendoorn K, Versteeg G, Feron PHM. Kinetics of the reaction of CO2 with aqueous potassium salt of taurine and glycine. AIChE journal. 2003;49(1):203-213. https://doi.org/10.1002/aic.690490118