Large-scale microstructural simulation of load-adaptive bone remodeling in whole human vertebrae

Sandro D. Badilatti, Patrik Christen, Alina Levchuk, Javad Hazrati Marangalou, Bert van Rietbergen, Ian Parkinson, Ralph Müller*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

17 Citations (Scopus)
13 Downloads (Pure)


Identification of individuals at risk of bone fractures remains challenging despite recent advances in bone strength assessment. In particular, the future degradation of the microstructure and load adaptation has been disregarded. Bone remodeling simulations have so far been restricted to small-volume samples. Here, we present a large-scale framework for predicting microstructural adaptation in whole human vertebrae. The load-adaptive bone remodeling simulations include estimations of appropriate bone loading of three load cases as boundary conditions with microfinite element analysis. Homeostatic adaptation of whole human vertebrae over a simulated period of 10 years is achieved with changes in bone volume fraction (BV/TV) of less than 5 %. Evaluation on subvolumes shows that simplifying boundary conditions reduces the ability of the system to maintain trabecular structures when keeping remodeling parameters unchanged. By rotating the loading direction, adaptation toward new loading conditions could be induced. This framework shows the possibility of using large-scale bone remodeling simulations toward a more accurate prediction of microstructural changes in whole human bones.

Original languageEnglish
Pages (from-to)83-95
Number of pages13
JournalBiomechanics and modeling in mechanobiology
Issue number1
Publication statusPublished - 1 Feb 2016
Externally publishedYes


  • Bone adaptation
  • Bone loading estimation
  • Bone remodeling simulations
  • Human vertebra
  • Microfinite element modeling
  • 2023 OA procedure


Dive into the research topics of 'Large-scale microstructural simulation of load-adaptive bone remodeling in whole human vertebrae'. Together they form a unique fingerprint.

Cite this