Large variations in NLS bi-soliton wave groups

Embrecht W.C. van Groesen, T. Nusantara, E. Soewono

    Research output: Contribution to journalArticleAcademicpeer-review

    2 Citations (Scopus)

    Abstract

    The nonlinear Schrödinger (NLS) equation describes the spatial¿temporal evolution of the complex amplitude of wave groups in beams and pulses in both second and third order nonlinear material. In this paper we investigate in detail the wave group that has the exact two-soliton solution as amplitude, and show that large variations in the amplitude appear to form a pattern that, at the peak interaction, resembles quite well the linear superposition. The complexity of the phenomenon is a combination of nonlinear effects and linear interference of the carrier waves: the characteristic parameter is the quotient of wave amplitude and frequency difference of the carrier waves, which is also proportional to the quotient of the modulation period of the carrier waves during interaction and the interaction period of the soliton envelopes.
    Original languageUndefined
    Pages (from-to)499-512
    JournalOptical and quantum electronics
    Volume33
    Issue number4-5
    DOIs
    Publication statusPublished - 2001

    Keywords

    • METIS-200486
    • Bi-soliton wave groups - carrier wave - envelopes - nonlinear Schrödinger equation - phase–amplitude representation
    • IR-36056

    Cite this

    van Groesen, Embrecht W.C. ; Nusantara, T. ; Soewono, E. / Large variations in NLS bi-soliton wave groups. In: Optical and quantum electronics. 2001 ; Vol. 33, No. 4-5. pp. 499-512.
    @article{29e471e4ae9b41b7aba64ca18a23f9c0,
    title = "Large variations in NLS bi-soliton wave groups",
    abstract = "The nonlinear Schr{\"o}dinger (NLS) equation describes the spatial¿temporal evolution of the complex amplitude of wave groups in beams and pulses in both second and third order nonlinear material. In this paper we investigate in detail the wave group that has the exact two-soliton solution as amplitude, and show that large variations in the amplitude appear to form a pattern that, at the peak interaction, resembles quite well the linear superposition. The complexity of the phenomenon is a combination of nonlinear effects and linear interference of the carrier waves: the characteristic parameter is the quotient of wave amplitude and frequency difference of the carrier waves, which is also proportional to the quotient of the modulation period of the carrier waves during interaction and the interaction period of the soliton envelopes.",
    keywords = "METIS-200486, Bi-soliton wave groups - carrier wave - envelopes - nonlinear Schr{\"o}dinger equation - phase–amplitude representation, IR-36056",
    author = "{van Groesen}, {Embrecht W.C.} and T. Nusantara and E. Soewono",
    year = "2001",
    doi = "10.1023/A:1010863421668",
    language = "Undefined",
    volume = "33",
    pages = "499--512",
    journal = "Optical and quantum electronics",
    issn = "0306-8919",
    publisher = "Springer",
    number = "4-5",

    }

    Large variations in NLS bi-soliton wave groups. / van Groesen, Embrecht W.C.; Nusantara, T.; Soewono, E.

    In: Optical and quantum electronics, Vol. 33, No. 4-5, 2001, p. 499-512.

    Research output: Contribution to journalArticleAcademicpeer-review

    TY - JOUR

    T1 - Large variations in NLS bi-soliton wave groups

    AU - van Groesen, Embrecht W.C.

    AU - Nusantara, T.

    AU - Soewono, E.

    PY - 2001

    Y1 - 2001

    N2 - The nonlinear Schrödinger (NLS) equation describes the spatial¿temporal evolution of the complex amplitude of wave groups in beams and pulses in both second and third order nonlinear material. In this paper we investigate in detail the wave group that has the exact two-soliton solution as amplitude, and show that large variations in the amplitude appear to form a pattern that, at the peak interaction, resembles quite well the linear superposition. The complexity of the phenomenon is a combination of nonlinear effects and linear interference of the carrier waves: the characteristic parameter is the quotient of wave amplitude and frequency difference of the carrier waves, which is also proportional to the quotient of the modulation period of the carrier waves during interaction and the interaction period of the soliton envelopes.

    AB - The nonlinear Schrödinger (NLS) equation describes the spatial¿temporal evolution of the complex amplitude of wave groups in beams and pulses in both second and third order nonlinear material. In this paper we investigate in detail the wave group that has the exact two-soliton solution as amplitude, and show that large variations in the amplitude appear to form a pattern that, at the peak interaction, resembles quite well the linear superposition. The complexity of the phenomenon is a combination of nonlinear effects and linear interference of the carrier waves: the characteristic parameter is the quotient of wave amplitude and frequency difference of the carrier waves, which is also proportional to the quotient of the modulation period of the carrier waves during interaction and the interaction period of the soliton envelopes.

    KW - METIS-200486

    KW - Bi-soliton wave groups - carrier wave - envelopes - nonlinear Schrödinger equation - phase–amplitude representation

    KW - IR-36056

    U2 - 10.1023/A:1010863421668

    DO - 10.1023/A:1010863421668

    M3 - Article

    VL - 33

    SP - 499

    EP - 512

    JO - Optical and quantum electronics

    JF - Optical and quantum electronics

    SN - 0306-8919

    IS - 4-5

    ER -